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1 Introduction

Masks are an important non-pharmaceutical intervention to slow the spread of COVID-19

(Abaluck et al., 2020; Howard et al., 2021), but constrained supply of high-quality masks

may have generated inequities in access and accelerated the early stages of the COVID-

19 pandemic. Sharp increases in global demand for masks following the rapid onset of

the pandemic generated fear that available supply was insufficient, motivating widespread

export restrictions on masks. Countries with limited domestic mask supply, and particularly

developing countries, may have faced particularly stark constraints. Concerns over limited

availability of masks even shaped public health recommendations on a global scale, with the

World Health Organization avoiding recommending healthy individuals wear masks during

early stages of the pandemic due to limited supply (World Health Organization, 2020). Yet,

there is little evidence that mask supply affected either the availability of masks or the spread

of COVID-19.

In this paper, we show increases in the supply of certifiably high-quality masks decreased

mask prices and slowed the spread of COVID-19 in the early stages of the pandemic in

Rwanda. We estimate these impacts within an event study design using receipt-level tax

data, leveraging spatial variation in exposure to domestic mask manufacturing before and

after a national policy licensing domestic textile manufacturers to produce masks. We find

exposure to licensed mask manufacturing decreased mask prices, increased quantities pur-

chased of domestically manufactured masks, and reduced COVID-19 infections; we provide

evidence that increased mask quality likely explains impacts of mask manufacturing exposure

on the spread of COVID-19.

To produce causal estimates of the impacts of mask supply, we leverage exogenous varia-

tion in exposure through domestic textile trade networks following the licensing of domestic

mask manufacturers in Rwanda. On April 17, 2020, the Rwanda Food and Drug Admin-

istration (FDA) granted initial licenses to garment manufacturers to produce masks. This
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policy was accompanied by a certification process, ensuring that all formally traded masks

met FDA filtration standards. Licensed mask manufacturing also received economic in-

centives to engage in mask production, including a Value Added Tax (VAT) exemption.

To isolate exogenous variation in exposure to the policy-induced mask manufacturing, we

make the observation that sub-Districts are more likely to source masks from the same sub-

Districts from which they source non-mask textiles, yet non-mask textile sourcing does not

predict sub-District characteristics nor pre-licensing changes in sub-District outcomes. We

use this observation to construct a shift-share (Goldsmith-Pinkham et al., 2020) measure of

exposure to licensed mask manufacturing, based on purchases by destination sub-Districts

of non-mask textiles from origin sub-Districts with high and low mask manufacturing in-

tensity. Our identification rests on the assumption that destination sub-Districts’ sourcing

of non-mask textiles is exogenous—destination sub-Districts that disproportionately source

non-mask textiles from high and low mask manufacturing intensity sub-Districts would have

experienced the same post-licensing changes in outcomes if there was no domestic mask

manufacturing. We construct high-frequency panel data on inter-sub-District product trade,

including prices and sales of masks, using the universe of timestamped transactions made

through electronic billing machine software from November 2019 through August 2020. For

each transaction we observe firm identifiers, product information, prices, and quantities, for

sales to both final consumers and to firms. We produce four key results.

First, the increased supply of masks generated by average exposure to licensed domestic

mask manufacturing persistently reduced mask prices by 8.8%. This decrease offset 13% of a

large increase in mask prices in Rwanda that followed the start of the COVID-19 pandemic.

These impacts on prices persisted to the end of our study period; suggesting that variation in

exposure is driven by variation in domestic trade costs, which generated persistent decreases

in mask prices in sub-Districts more exposed to licensed mask manufacturing. Our magni-

tudes support this interpretation: we show our estimates imply a 10% decrease in distance

to mask manufacturing causes a 0.6% decrease in mask prices, in line with existing estimates
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from the trade literature (Donaldson, 2018).

Second, while exposure to licensed domestic mask manufacturing increased purchases of

formally traded masks, these effects dissipate rapidly. Our estimates imply price elasticities

of demand for masks of between 3 and 13 in April and May. These elasticities are larger than

demand elasticities for other durable preventive health products (Berry et al., 2020), which

we interpret as driven by the availability of a close substitute for formally manufactured

masks in these early months of the pandemic—informally produced non-certified masks,

which we do not observe in our data on formal transactions. These elasticities converge

toward zero, coinciding with the June gazetting of a decree requiring that all masks sold in

Rwanda meet the same quality standards as certified manufactured masks, which targeted

the informal sale of non-certified masks. We therefore interpret this fade-out as driven by

substitution away from informal low-quality masks in low-exposure sub-Districts to formally

manufactured masks following the decree.

Third, increases in certified mask supply slowed the spread of COVID-19. As an alter-

native to sub-District data on COVID-19 cases, we use Electronic Billing Machine (EBM)

data on purchases of fever medicine as a proxy for active COVID-19 infections. We find

average manufactured mask exposure caused a 12% reduction in the monthly growth rate

of infections through June, and no impacts on growth rate in July and August while level

impacts on infections persisted. These implied impacts of certified mask manufacturing on

the transmission of COVID-19, the first in the context of Sub-Saharan Africa, are compara-

ble to existing work in the United States (Chernozhukov et al., 2021) and rural South Asia

(Abaluck et al., 2021). Our results also contribute more broadly to a literature that estimates

the impacts of preventive health interventions at scale (Miguel & Kremer, 2004; Bleakley,

2007, 2010); we find large benefits of government support for domestic mask manufacturing,

with averted hospitalization costs an order of magnitude larger than fiscal costs.

Lastly, we infer from the dynamics of our results that mask quality, as opposed to in-

creased mask use, explains the impact on COVID-19 infections. Starting April 19, Rwanda
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had strict enforcement of mask mandates and near- universal compliance. However, prior

to the June decree, standards for mask quality were only implemented by, and enforced for,

licensed mask manufacturers; masks meeting these standards display much greater aerosol

filtration (Konda et al., 2020). While we do not directly observe the quality of informally

traded masks, anecdotal evidence supports the notion that these did not meet FDA stan-

dards. Starting in June, all mask manufacturers had to follow these filtration standards.

Consistent with quality rather than use as a channel, we no longer see impacts of early ex-

posure to licensed manufacturing on the spread of COVID-19 after the June decree, just as

the impacts on certified manufactured mask purchases fade out. In contrast, our impacts on

prices persist, while we would expect a reduction in prices to drive any use channel. These

results imply policies that increase the supply of certifiably high-quality masks are strongly

complementary to policies that increase mask use (Abaluck et al., 2021).

The rest of the paper is structured as follows. Section 2 describes the data and the policy

environment; Section 3 describes our identification and empirical strategy, and presents our

estimates of impacts of domestic certified mask manufacturing; and Section 4 concludes.

2 Data and context

2.1 Data

We use administrative data from the Rwanda Revenue Authority (RRA) to study the market

for masks at the outset of the pandemic in Rwanda. Our study sample begins in Novem-

ber 2019 and extends through August 2020, six months after the first positive COVID-19

test in Rwanda. We leverage administrative data from EBM receipts, customs, and firm

registration, and complement these with census data.

EBM Our primary source of data is the universe of digitally signed and timestamped

software issued EBM receipts collected by the tax authority between November 2019 and
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August 2020, allowing us to track product-level sales between firms and final consumers.

EBMs record receipts issued by businesses to support the collection of VAT in Rwanda, and

is mandated for use by VAT taxpayers. In November 2019, these data recorded 81.8 billion

Rwandan Francs (RwF) of value added, equivalent to 10.4% of monthly GDP or 16.9% of

VAT declared turnover.

We leverage these receipts to construct firm-product data on prices and quantities at

the transaction level. First, each EBM is identified by a unique Sales Data Controller

(SDC) identifier, which we link to Taxpayer Identification Numbers (TIN) and, in turn, firm

registration data to identify selling firms. When a receipt is issued for a sale to other VAT

taxpayers, purchasing firms must provide their TIN. To construct the sub-District of both

buyers and sellers we assume that non-VAT taxpayer final consumers are located in the

same sub-District as the selling firm. For the majority of our analysis, we aggregate data

to the buyer sub-District, which constitutes credible markets; the average sub-District has a

population of 32,000 citizens and 1,000 registered firms. Second, for each transacted item on

a receipt, we observe a product-classification UNSPSC code and a string description. We use

two product classifications in our analysis—we identify textile products as having UNSPSC

codes 601058, 5310, and 2312, and we identify masks as having string descriptions containing

mask in English, French (masque), or Kinyarwanda (agapfukamunwa), and remove any

misclassified products (e.g., masking tape). Masks are then classified as manufactured when

sold by a firm that was issued a mask manufacturing license from the FDA. In Section

3.1.1, we use this data on mask and textile purchases and sales to construct sub-District

mask manufacturing exposure; our primary analysis sample comprises the 86 sub-Districts

for which we observe non-mask textile purchases necessary to construct mask manufacturing

exposure.

Third, we observe a timestamp for each receipt, and prices and quantities for each trans-

acted item. Lastly, each unique combination of selling firm and product string description

identifies a firm-product. We present additional details on the coverage and construction of
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the EBM data in A.1.

Basic descriptive statistics from the EBM data are presented in Appendix A.1.3. We

observe over 30,000 transactions covering over 2,500,000 masks, approximately 0.9 masks

per adult in our primary analysis sample. On average, prices are 650 RwF (0.63 USD) per

mask. Production of masks is spatially concentrated relative to consumption; aggregating

to the sub-District level, the average purchasing (selling) sub-District buys (sells) from 2.4

(11.3) sub-Districts.

Customs We construct measures of border prices of masks using customs data containing

the universe of imports by Rwandan firms. Just as for EBM, we identify mask imports using

a combination of product codes and product string descriptions, and all imports are times-

tamped. We then use the combination of the point of entry and the TIN of the importing

firm as identifiers to construct an equivalent of firm-product.

Firm registration data We construct firm characteristics using formal registrations of

firms. Each firm is identified by a unique TIN, and the registrations contain the firm’s ISIC

sector classification (which we use to identify textile manufacturers) and sub-District.

Census We construct data on socioeconomic characteristics of sub-Districts using the 2012

Population and Housing Census.

2.2 Context

Our analysis of the impacts of mask manufacturing covers the early stages of the COVID-19

pandemic in Rwanda. The Ministry of Health (MINISANTE) announced the first case of

COVID-19 in Rwanda on March 14, 2020. On March 22, the Prime Minister announced

a lockdown including school closures, the suspension of international travel, a work-from-

home mandate, and the prohibition of non-essential movement, all with meaningful impacts

on economic activity (Byrne et al., 2021). These restrictions were partially lifted on May 4,
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accompanied by the introduction of a curfew which then remained in place, in some form,

over the remainder of our study period. Other restrictions that were lifted (and sometimes

reinstated) after May 4 included the resumption of domestic travel on June 2, and the

reopening of Kigali International Airport on August 1.

During the early months of the pandemic, Rwanda rapidly implemented recommendations

and national mandates for the use of masks in public. We present the timeline of key events

and policies that relate to the mask mandate during the early months of the pandemic in

Rwanda in Figure 1a, leveraging fortnightly cabinet announcements and daily COVID-19

updates. On March 14, 2020, immediately following the detection of the first COVID-

19 case in Rwanda, MINISANTE recommended the use of masks in health care settings.

A compulsory mask mandate for all public settings was introduced on April 19, just before

lockdown restrictions were partially lifted on May 4. This mandate was strictly enforced, with

deterrence measures including fines in Kigali City Province, and complementary measures

to promote compliance, including infomercials by the national broadcaster and education

campaigns by the Rwanda National Police. These measures were effective—by early June,

according to the Innovations for Poverty Action’s RECOVR survey, 95% of households always

wore a mask when they went out in public.
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Figure 1: Timeline

(a) Mask policy

(b) Domestic and border prices

(c) Mask turnover at mask importers and manufacturers

Notes: Figure 1a presents a timeline of mask (in black) and mask manufacturer (in pink) policies in Rwanda
during our study period. Figure 1b presents a monthly time series of log changes in import (in black) and
domestic (in pink) mask prices relative to January 2020. Figure 1c presents a bimonthly time series of mask
turnover at importers (in black) and manufacturers (in pink).
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To increase the availability of certifiably high-quality masks, the Rwanda FDA issued

licenses to textile manufacturers to produce surgical and barrier masks. We present the

timeline of key policy actions targeting the manufacturing of certified masks in Rwanda in

Figure 1a. On March 21, 2020, in response to reported shortages of imported masks, the

Ministry of Trade and Industry (MINICOM) imposed price restrictions and the FDA issued

a public announcement citing concerns about the sale of substandard masks. To combat

this shortage and to mitigate concerns about the sale of unregulated low-quality masks,

the FDA licensed 21 garment manufacturers that had submitted applications to produce

masks on April 17, two days before the national mask mandate.1 Licensing was coupled

with additional incentives to engage in mask production—MINICOM announced the intent

to facilitate access to machines and raw materials, and a VAT exemption for domestically

manufactured masks was granted by the Ministry of Finance and Economic Planning on

April 30.

To ensure masks minimized transmission of COVID-19, quality standards were progres-

sively scaled up, starting with licensed manufacturers and eventually covering all mask sales

nationally. As part of the April 17, 2020, licensing of textile manufacturers to produce

masks, the FDA enforced quality standards on manufacturers through direct assessments of

manufactured mask quality. These standards included specifications for filtration, penetra-

tion, and breathability of masks, and were consistent with product characteristics known

to maximize aerosol filtration efficiency (Konda et al., 2020). We present details on these

requirements and specifications in B.1. Similar standards were gazetted into law in June,

covering all masks. These standards constituted the benchmark for subsequent audits. Sim-

ilar to enforcement in the earlier months of the pandemic, licensed manufacturers submitted

their masks to quality assurance tests prior to leaving the factory. Firm audits were supple-

1By May 26, an additional 65 smaller firms from the textile industry had been licensed. These firms
comprise only 3% of the domestic mask production in our data. In Appendix D, we find licensed firms
shift production away from textiles and into masks, but do not increase profits; this is consistent with firm
entry into mask production until firms earn no profits from mask production, suggesting mask demand was
sufficient only to accommodate the initial manufacturers.
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mented by retailer audits, and substandard masks identified by audits were removed from

markets. In line with the gazetted guidelines, compliant masks were affixed with an RSB

standardization mark.

2.3 Descriptive evidence on domestic manufacturing, mask prices,

and markups

To motivate our analysis of the impacts of exposure to domestic mask manufacturing, we

present descriptive evidence in Figure 1 that licensing and promotion increased domestic

mask manufacturing and decreased mask prices in the presence of constrained international

supply. To implement this analysis, we construct a time series of domestic and border

prices of masks in Rwanda, and compare to total turnover by domestic mask importers and

manufacturers; details on the construction of these time series are in Appendix A.4.

First, large increases in both domestic prices and turnover of masks followed mask man-

dates in healthcare settings and all public settings on March 14, 2020, and April 19, 2020,

respectively. We interpret these policies as generating a large increase in demand for masks,

which would increase both prices and quantities in the presence of upward-sloping supply

of masks. However, as Rwanda is a relatively small country, one might expect it to face an

exogenous international price of masks; in practice, we do not observe changes in the bor-

der price of masks. Despite this, we observe that large, statistically significant gaps emerge

between domestic and border prices following mask mandates. We interpret this growing

wedge between domestic and international mask prices as being potentially explained by

either quantity restrictions on mask imports generated by international export restrictions

on masks, or a reduced elasticity of demand for masks coupled with importer market power.

Second, domestic mask prices began to fall toward pre-COVID-19 levels starting in May,

2020, coinciding with the peak of domestic manufacturing of masks that followed initial li-

censing of manufacturers on April 17.2 This coincidence provides suggestive evidence that

2We observe the licensing status and the imports of all firms in the EBM data. Though we cannot
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domestic manufacturing decreased mask prices, but is insufficient to establish causality—

alternative explanations that could have caused the observed decreases in the price of masks

include increases in mask imports or decreases in demand for masks due to the reuse of

masks. Establishing causality from these time series is even more challenging when COVID-

19 infections are an outcome, as they were trending upward in Rwanda from March through

August (just as they were globally), independent of domestic mask manufacturing. In Sec-

tion 3, we therefore isolate exogenous variation in exposure to mask manufacturing across

sub-Districts to estimate the impacts of mask manufacturing on purchases of domestically

manufactured masks, mask prices, and COVID-19 infections.

3 Impacts of domestic mask manufacturing

3.1 Empirical strategy

3.1.1 Construction of mask manufacturing exposure

We construct a shift-share (Bartik, 1991) instrument capturing exposure to domestic mask

manufacturing by combining exogenous variation in destination sub-District exposure to

origin sub-Districts through textile markets with variation across origin sub-Districts in their

intensity of mask manufacturing. First, we let Tod be the total sales of textiles excluding

masks from November 2019 to August 2020 from origin sub-District o to destination sub-

District d—we use these textile sales to construct the exposure of destination sub-Districts

to mask manufacturing across origin sub-Districts. Second, we let M s
od be the total sales of

masks from November 2019 to August 2020 from origin sub-District o to destination sub-

District d made by firms of type s. We let s = mnf represent licensed textile manufacturers,

and s = oth represent all other firms (typically wholesalers and importers). We use these

sales of masks to construct the fraction of masks sold by origin sub-District o that are

definitively rule out domestic manufacture by non-licensed EBM firms, we do not expect firms to formally
record non-licensed production activity.
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manufactured (its “mask manufacturing intensity”). Following Goldsmith-Pinkham et al.

(2020), we exclude sales to destination sub-District d in this construction. We then construct

our shift-share instrument for exposure to domestic mask manufacturing in destination sub-

District d as

Mask manufacturing exposured ≡
∑
o

Tod∑
o′ To′d︸ ︷︷ ︸

non-mask textile share

∑
d′ ̸=d M

mnf
od′∑

d′ ̸=d M
mnf
od′ +Moth

od′︸ ︷︷ ︸
mask manufacturing intensity

(1)

We plot variation in mask manufacturing exposure across sub-Districts in Figure 2a, and

for comparison plot variation in mask manufacturing intensity in Figure 2b. Since mask

manufacturing intensity measures exposure to certified masks, we note that our exposure

measure should also be interpreted as exposure to high-grade masks. In Section 3.1.2, we

argue variation in mask manufacturing exposure is exogenous.

Construction We exclude sales to destination sub-District d when constructing mask

manufacturing intensity of each origin sub-District o to mitigate the concern that shocks

to demand for manufactured masks in destination sub-District d could increase the mask

manufacturing intensity in closely connected origin sub-Districts, increasing d’s mask man-

ufacturing exposure and generating simultaneity bias; in Appendix F.1, we show that our

results are unaffected if we do not exclude sales to destination sub-District d. In addition,

we note that mask manufacturing exposure is only defined for sub-Districts with non-mask

textile purchases, and that we define mask manufacturing intensity to be 0 in origin sub-

Districts with no mask sales to other destinations.

Interpretation We note that mask manufacturing exposure can be interpreted as desti-

nation sub-District d’s predicted purchases of domestically manufactured masks as a share

of total purchases of masks. Mask manufacturing exposure is not equal to actual purchases

of domestically manufactured masks as a share of total purchases of masks for two reasons—
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leave-out mask manufacturing intensity of origin o may not equal the mask manufacturing

intensity of origin o’s mask sales to destination d, and destination d’s non-mask textile pur-

chase share from origin omay differ from its mask purchase share from origin o.3 Importantly,

these differences exclude idiosyncratic destination d demand for masks from the construction

of mask manufacturing exposure.

3Formally,
∑

d′ ̸=d Mmnf
od′∑

d′ ̸=d Mmnf
od′ +Moth

od′
̸= Mmnf

od

Mmnf
od +Moth

od

and Tod∑
o′ Tod

̸= Mmnf
od +Moth

od∑
o′ M

mnf
o′d +Moth

o′d
, respectively. In Appendix I, we

show that the mask manufacturing intensity of origin sub-District mask sales is correlated across destinations,
and that destination sub-Districts are more likely to source masks from the same sub-Districts from which
they source non-mask textiles; as a result, mask manufacturing exposure increases the post-licensing supply
of domestically manufactured masks.
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Figure 2: Mask manufacturing exposure and intensity vary substantially across sub-Districts

(a) Mask manufacturing exposured ≡
∑

o
Tod∑
o′ To′d

∑
d′ ̸=d Mmnf

od′∑
d′ ̸=d Mmnf

od′ +Moth
od′

Rwanda Kigali

(b) Mask manufacturing intensityo ≡
∑

d Mmnf
od∑

d Mmnf
od +Moth

od

Rwanda Kigali

Notes: Figure 2a plots variation in destination sub-District mask manufacturing exposure. Figure 2b plots
variation in origin sub-District mask manufacturing intensity. The left panels plot variation across Rwanda,
while the right panels zoom in on variation within Kigali City Province.
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3.1.2 Estimating the impacts of mask manufacturing exposure

We estimate the impacts of exposure to licensed mask manufacturing on availability and

prices of domestically manufactured masks and the spread of COVID-19 using an event-

study design. For outcome ydt measured in sub-District d in month t, we estimate the

following two-way fixed effects specification:

ydt =

Aug 2020∑
t=Nov 2019,t̸=Mar 2020

βtMask manufacturing exposured +X ′
dδt + θd + γt + ϵdt (2)

θd and γt are a set of sub-District fixed effects and month fixed effects, respectively. X ′
dδt

allows time-varying coefficients on sub-District characteristics, to control for sub-District

characteristics that may be correlated with both mask manufacturing exposure and time

trends (Duflo, 2001). Our coefficients of interest are βt, the impact of mask manufacturing

exposure in month t. We use March 2020, one month prior to the initial licensing of textile

manufacturers to produce multi-layer masks, as the reference month. Coefficients βt should

therefore be interpreted as impacts on changes in outcomes relative to March 2020. For infer-

ence, we cluster standard errors at the sub-District-level, level at which mask manufacturing

exposure varies.

Choice of supply shifter We use exposure to licensed mask manufacturing as our source

of exogenous variation in mask supply. We do so, rather than mask manufacturing inten-

sity, for two reasons. First, variation in mask manufacturing intensity is unlikely to be

exogenous—one potential concern is that sub-Districts which manufacture more masks are

likely to have more productive garment manufacturers, and this may be correlated with

determinants of demand for masks and factors influencing the spread of COVID-19. Sec-

ond, licensed mask manufacturing in a given sub-District poorly predicts the exposure of

consumers in that sub-District to licensed mask manufacturing; exposure will depend ulti-

mately on the mask manufacturing intensity in sub-Districts from which local firms source
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masks, which need not be located in the same sub-District.

Sufficient conditions for exogeneity Our estimates of the impacts of mask manufac-

turing exposure will be unbiased if mask manufacturing exposure is independent of other

determinants of the availability and prices of domestically manufactured masks and the

spread of COVID-19. As in Goldsmith-Pinkham et al. (2020), one sufficient condition for

this assumption is that destination sub-District sourcing of other textiles is independent

of other determinants of the availability and prices of domestically manufactured masks

and the spread of COVID-19. In particular, we assume it is not the case that destination

sub-Districts that disproportionately source other textiles from high mask manufacturing

intensity origin sub-Districts would have had larger or smaller changes in demand or supply

of certified masks and COVID-19 infections absent licensed domestic mask manufacturing.

For this assumption to hold, it is particularly important that we have excluded masks when

constructing our measures of other textile sourcing, as destination sub-Districts with high

demand for domestically manufactured masks will source more of their masks from origin

sub-Districts with high mask manufacturing intensity. In contrast, it is unlikely that idiosyn-

cratic shocks to demand or supply of masks will be correlated with the sourcing of non-mask

textiles (predominantly clothing).

Tests of exogeneity We test the robustness of our assumption of the exogeneity of mask

manufacturing exposure in three ways, adapting suggestions from Goldsmith-Pinkham et al.

(2020) for difference-in-differences with shift-share instruments to our event-study design;

the results of all three tests corroborate the exogeneity of exposure to policy-induced mask

manufacturing. First, in Section 3.2 we show mask manufacturing exposure is uncorrelated

with sub-District characteristics, and in Section 3.3 we show our results are robust to in-

cluding or excluding important sub-District characteristics Xd from Equation 2. Second, in

Section 3.3 we show mask manufacturing exposure is uncorrelated with trends in outcomes
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prior to licensing.4 Third, we replace our measure of leave-out mask manufacturing inten-

sity with its residuals from regressions on origin sub-District characteristics, which changes

the weights placed on destination sub-Districts’ exogenous non-mask textile purchase shares

across origins (Goldsmith-Pinkham et al., 2020). Our results that both leverage residualized

shocks, and also include controls interacted with time fixed effects, are doubly robust; this

is because either exogeneity of the non-mask textile purchase shares conditional on observ-

ables, or exogeneity of the mask manufacturing intensity shocks conditional on observables,

is sufficient for consistency of our estimates of the impacts of mask manufacturing exposure.

Event studies and two-way fixed effects Equation 2 does not feature a staggered

design, and therefore is not subject to recent criticisms of two-way fixed effects specifica-

tions with a staggered rollout of a binary treatment (e.g., de Chaisemartin & D’Haultfœuille

(2020)). However, it is similar to specifications analyzed in recent work that demonstrates the

parallel trends assumption is insufficient for identification in difference-in-difference designs

with continuous treatment (in our context, mask manufacturing exposure) when treatment

effect heterogeneity is correlated with treatment (Callaway et al., 2021). Here, a stronger

independence assumption is sufficient for identification, and we test this assumption in Sec-

tion 3.2. A similar issue emerges when controls are interacted with time fixed effects in a

two-way fixed effects specification, even when treatment is binary (Borusyak et al., 2021b).

In Section 3.3, we show that our results are robust to the inclusion or exclusion of controls

interacted with time fixed effects.

Testing parallel trends and pre-test bias Equation 2 jointly tests for parallel trends

pre-licensing and estimates impacts post-licensing, which can introduce bias from pre-testing

(Roth, 2021); in Appendix F.2 we follow Borusyak et al. (2021b) and show our results are

robust to an approach that eliminates this bias.

4We only observe data on our primary outcomes going back to November 2019; as a complement, in
Appendix E.1 we also show that mask manufacturing exposure is uncorrelated with trends in VAT turnover
going back to the first quarter of 2019.
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Inference We cluster standard errors at the sub-District level, as opposed to inference

based on variation in mask manufacturing intensity (Adao et al., 2019), as we argue exoge-

nous variation in destination sub-District mask manufacturing exposure comes from desti-

nation sub-Districts’ textile sourcing (“shares”), as discussed in Goldsmith-Pinkham et al.

(2020), rather than from origin sub-Districts’ mask manufacturing intensity (“shocks”), as

assumed in Adao et al. (2019) and Borusyak et al. (2021a). In results available upon request,

we produce results with standard errors clustered at either the District-level or Conley (1999)

standard errors using a range of bandwidths of distances between sub-District centroids. In

general, clustering at the sub-District level results in more conservative inference and is our

preferred approach.

Outcomes We have three primary outcomes of interest in Equation 2: log buyer prices

of masks, mask quantities purchased from manufacturers as a share of total mask quanti-

ties purchased, and COVID-19 infections. First, when log buyer prices of masks are the

outcome of interest, we do not aggregate to the destination sub-District-month, as changes

in aggregated prices would include changes in the firm-product composition of purchased

masks. We instead construct log buyer prices as mean log prices at the destination sub-

District-by-month-by-firm-product level, and include firm-product fixed effects in Equation

2 to control for any unobservable mask characteristics that might influence price, such as

style or material.5 Second, we use “effective,” or quality-adjusted, quantities of masks to

construct the share of masks purchased from manufacturers; we describe the construction

of effective quantities in Appendix A.1.2, and we show our results are similar when we use

sales values instead of effective quantities in Appendix F.5. Third, when COVID-19 infec-

tions are the outcome of interest, we instead use the number of purchases of paracetamol, a

commonly recommended fever medicine, as a proxy for COVID-19 infections.6 To produce

5In Appendix F.4, we test robustness to the level of aggregation by leaving observations at the receipt-
by-firm-product level and find qualitatively similar results.

6We use purchases of paracetamol as a proxy because we do not have data on sub-District COVID-
19 infections as COVID-19 testing in Rwanda did not become widespread until the last two months of
our study period. In Appendix G, we show that increased purchases of paracetamol are associated with
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estimates that are readily comparable to existing work, we estimate impacts on changes in

the log number of purchases of paracetamol. As the number of purchases of paracetamol is

frequently 0 in a given sub-District, we estimate Equation 2 using Poisson pseudo maximum

likelihood (Wooldridge, 1999).

3.2 Balance

In Table 1, we show that mask manufacturing exposure is uncorrelated with destination

sub-District characteristics. This result holds across specifications that do and do not con-

trol for Province fixed effects, and specifications that do and do not replace leave-out mask

manufacturing intensity with its residuals from regressions on Province fixed effects, log

population density, and log number of textile manufacturers.7 Across 32 tests, we fail to

reject the null of no correlation in just two tests at the 10% level. First, in Column 4, sub-

Districts with high mask manufacturing exposure purchase significantly more inputs when

we include Province fixed effects, but we do not residualize mask manufacturing intensity

when constructing mask manufacturing exposure. Second, in Column 5, we reject the null

of balance in the omnibus F-test when we do not include Province fixed effects, but we do

residualize mask manufacturing intensity when constructing mask manufacturing exposure.

We find no evidence of imbalance for specifications for which we report results in Section

3.3; these specifications are analogous to Column 3 (no controls and no residualization of

mask manufacturing intensity when constructing mask manufacturing exposure) and Col-

umn 6 (controls for, and residualization of, mask manufacturing intensity when constructing

mask manufacturing exposure on Province fixed effects, log textile manufacturers, and log

increased COVID-19 infections at the District-level. As COVID-19 infections are not the sole cause of fever,
and therefore of purchases of paracetamol, we discuss how this impacts the interpretation of our magnitudes
in Appendix C.

7We choose log population density and log number of textile manufacturers as these controls are the
most strongly correlated with mask manufacturing intensity in Columns 1 and 2. These two characteristics
plausibly affect mask manufacturing intensity—as textile manufacturers produce masks, sub-Districts with
more textile manufacturers will likely produce more masks, and lower population density sub-Districts are
more likely to specialize in manufacturing relative to intermediation or importing.
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population density).8

Table 1: Mask manufacturing intensity and mask manufacturing exposure are uncorrelated
with sub-District characteristics

Dependent variable:

Mask manufacturing intensity Mask manufacturing exposure

(1) (2) (3) (4) (5) (6)

log EBM turnover, RwF Bn −0.000 −0.080 −0.023 −0.026 −0.021 −0.025
(0.076) (0.096) (0.015) (0.016) (0.017) (0.019)
[0.997] [0.408] [0.120] [0.120] [0.216] [0.202]

log EBM input, RwF Bn −0.115 0.017 0.054 0.062 0.057 0.064
(0.124) (0.151) (0.033) (0.035) (0.039) (0.040)
[0.361] [0.910] [0.109] [0.077] [0.148] [0.121]

log population density −0.104 −0.080 −0.040 −0.046 −0.032 −0.042
(0.068) (0.066) (0.039) (0.037) (0.045) (0.042)
[0.136] [0.234] [0.312] [0.210] [0.483] [0.326]

% completed primary school 0.015 0.000 −0.001 −0.001 0.001 0.001
(0.018) (0.019) (0.002) (0.002) (0.002) (0.003)
[0.392] [0.999] [0.684] [0.706] [0.703] [0.706]

% employed −0.012 0.009 −0.013 −0.004 −0.009 0.001
(0.024) (0.026) (0.009) (0.010) (0.010) (0.011)
[0.628] [0.732] [0.167] [0.719] [0.390] [0.962]

log textile manufacturers 0.183 0.169 −0.022 −0.016 −0.013 −0.006
(0.131) (0.128) (0.037) (0.035) (0.044) (0.043)
[0.173] [0.198] [0.560] [0.661] [0.765] [0.893]

log population 0.069 0.055 −0.016 −0.036 −0.039 −0.049
(0.163) (0.145) (0.051) (0.065) (0.055) (0.072)
[0.677] [0.708] [0.757] [0.577] [0.477] [0.497]

Province FE X X X
Residualized shocks X X
# observations 43 43 86 86 86 86
# clusters (sub-Districts) 43 43 86 86 86 86
Omnibus F 0.629 0.993 1.123 0.999 2.124 0.942

[0.728] [0.454] [0.358] [0.439] [0.051] [0.480]

Notes: Columns 1 and 2 report coefficients from regressions of mask manufacturing intensity on sub-District
characteristics, while Columns 3 through 6 report coefficients from regressions of mask manufacturing expo-
sure on sub-District characteristics. Standard errors are reported in parentheses, and p-values are reported in
brackets. Columns 2, 4, and 6 control for Province fixed effects, while Columns 5 and 6 residualize leave-out
mask manufacturing intensity by regression on Province fixed effects, log population density, and log number
of textile manufacturers before constructing mask manufacturing exposure.

8We report results from specifications analogous to Columns 4 and 5 in Appendix F.3, and find our
estimates are qualitatively similar under these alternative approaches to introducing controls.
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3.3 Results

3.3.1 Impacts of mask manufacturing exposure

We now present our results on the impact of mask manufacturing exposure on mask prices,

purchases of masks from manufacturers, and COVID-19 infections. Table 2 reports estimates

of these impacts from Equation 2; we focus our discussion on estimates from Columns 1, 3,

and 5 from our most parsimonious specification without controls, as estimates are quantita-

tively and qualitatively similar when we include controls, and we graph these estimates in

Figure 3. All impacts are relative to March 2020, the month before the licensing of domestic

textile manufacturers to produce high-quality masks was announced.
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Table 2: Mask manufacturing exposure increases purchases of masks from manufacturers,
decreases mask prices, and reduces COVID-19 infections

Dependent variable:

log buyer price Eff mask Q from manufacturers
Eff mask Q

# paracetamol receipts

(1) (2) (3) (4) (5) (6)

Mask manufacturing exposured × Novt

0.445
(0.680)
[0.514]

0.263
(0.666)
[0.694]

-0.016
(0.123)
[0.897]

0.155
(0.202)
[0.444]

0.588
(1.040)
[0.572]

0.029
(0.859)
[0.973]

Mask manufacturing exposured ×Dect

0.173
(0.732)
[0.814]

0.199
(0.717)
[0.782]

0.035
(0.114)
[0.760]

0.135
(0.214)
[0.531]

0.267
(0.734)
[0.716]

-0.194
(0.618)
[0.753]

Mask manufacturing exposured × Jant

0.296
(0.383)
[0.441]

-0.101
(0.343)
[0.769]

0.057
(0.115)
[0.620]

0.224
(0.211)
[0.290]

0.254
(0.685)
[0.711]

0.415
(0.685)
[0.545]

Mask manufacturing exposured × Febt

0.367
(0.374)
[0.328]

0.393
(0.318)
[0.219]

0.046
(0.089)
[0.608]

0.130
(0.181)
[0.475]

-0.080
(0.723)
[0.912]

0.524
(0.752)
[0.485]

Mask manufacturing exposured ×Mart - - - - - -

Mask manufacturing exposured × Aprt

-0.521
(0.311)
[0.098]

-0.600
(0.300)
[0.049]

1.095
(0.252)
[0.000]

0.973
(0.413)
[0.021]

0.208
(0.832)
[0.803]

-0.393
(0.953)
[0.680]

Mask manufacturing exposured ×Mayt

-0.613
(0.327)
[0.064]

-0.673
(0.290)
[0.023]

0.533
(0.179)
[0.004]

0.464
(0.303)
[0.130]

-1.178
(0.730)
[0.107]

-1.056
(0.565)
[0.062]

Mask manufacturing exposured × Junt

-0.671
(0.391)
[0.089]

-0.792
(0.423)
[0.065]

0.196
(0.194)
[0.316]

0.513
(0.293)
[0.083]

-1.968
(0.728)
[0.007]

-1.669
(0.571)
[0.003]

Mask manufacturing exposured × Jult

-0.210
(0.309)
[0.499]

-0.316
(0.314)
[0.318]

0.438
(0.136)
[0.002]

0.398
(0.262)
[0.132]

-1.973
(0.825)
[0.017]

-1.619
(0.753)
[0.032]

Mask manufacturing exposured × Augt

-0.460
(0.272)
[0.095]

-0.606
(0.251)
[0.018]

-0.138
(0.197)
[0.485]

0.031
(0.311)
[0.920]

-1.734
(0.918)
[0.059]

-1.564
(0.862)
[0.070]

Estimation method OLS OLS OLS OLS Poisson Poisson

Firm-product FE X X

Destination sub-District FE X X X X X X

Month FE X X X X X X

Residualized shocks X X X

Controls × Month FE X X X

# observations 3,937 3,937 506 506 780 780

# clusters (sub-Districts) 86 86 86 86 78 78

Notes: Columns 1 through 6 report coefficients on mask manufacturing exposure interacted with month fixed
effects from estimates of Equation 2. Standard errors are reported in parentheses, and p-values are reported
in brackets. All columns include destination sub-District fixed effects and month fixed effects. Columns 1
and 2 include firm-product fixed effects, while Columns 5 and 6 estimate coefficients using Poisson pseudo
maximum likelihood. Columns 2, 4, and 6 include month fixed effects interacted with controls for Province
fixed effects, log population density, and log number of textile manufacturers, and residualize leave-out
mask manufacturing intensity by regression on those same controls before constructing mask manufacturing
exposure.
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Figure 3: Mask manufacturing exposure increases purchases of masks from manufacturers,
decreases mask prices, and reduces COVID-19 infections

Notes: Estimated dynamic impacts of mask manufacturing exposure from Columns 1, 3, and 5 of Table 2
with 95% confidence intervals are plotted above.
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First, exposure to mask manufacturing causes persistent decreases in the price of masks

through greater access to mask markets (see columns 1 & 2 in table 2). Scaling our av-

erage estimated effect on prices across months by average mask manufacturing exposure,

our results imply licensing mask manufacturing decreases prices nationally by 8.8%.9 This

estimate represents a lower bound in that it does not account for across sub-District general

equilibrium effects through markets for non-manufactured masks. We take two approaches

to interpreting the magnitude of this effect. First, in Figure 1b, we showed that March 2020

mask prices were 109% higher in Rwanda than in January, associated with the large increase

in demand for masks during the COVID-19 pandemic, while, by August, prices had fallen

17.9% below March levels. Scaling our average effect by average mask manufacturing expo-

sure, our results imply 51.6% of the decrease in prices from March to August is explained

by mask manufacturing, offsetting 13% of the January-to-March increase. Second, as mask

manufacturing exposure is constructed from differences across sub-Districts in non-mask tex-

tile trade flows, we interpret these impacts as being driven by persistent differences in costs

of trade between sub-Districts. Building on this interpretation, we combine our estimated

impacts of mask manufacturing exposure on prices with estimates from a gravity regression

of log textile trade flows on log distance which we present in Appendix H; the resulting

back-of-envelope calculation implies that a 10% decrease in distance to mask manufacturing

at average mask manufacturing exposure causes a 0.6% decrease in mask prices.10

Second, the persistent decrease in mask prices caused by exposure to mask manufacturing

caused large, temporary increases in mask quantities purchased from manufacturers prior to

the enforcement of quality standards nationally. As shown in Figure 3, impacts on mask

quantities purchased from manufacturers are large and significant in April, but fade over time

and vanish completely by August. We argue that our results in the initial months reflect

substitution away from informal non-certified masks into domestically manufactured certified

9The average estimated effect on prices is the average of the post-March coefficients from column 1 of
Table 2. Average mask manufacturing exposure is calculated across destination sub-Districts.

10For comparison, Donaldson (2018) estimates a 10% decrease in distance to the source of salt causes a
0.9%–1.7% price decrease in salt prices in India, statistically indistinguishable from our estimate.
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masks in sub-Districts with high mask manufacturing exposure, while the declining impacts

are driven by this same substitution occurring in sub-Districts with low mask manufacturing

exposure following the implementation of quality standards for masks. The June gazetting of

quality standards for masks sold in Rwanda coincides with these declining impacts; quality

standards were already met by masks produced by licensed manufacturers, as we discuss in

Section 2.2. As a result, these standards primarily targeted the informal sale of non-certified

masks, while mask purchases in our data are of domestically manufactured and imported

masks, which likely already met these standards. In summary, the introduction of a ban on

a substitute product (informal non-certified masks) decreased the elasticity of demand for

domestically manufactured masks, and particularly so when coupled with strictly enforced

mask mandates, and this decreased the quantity response of certified manufactured masks

to the persistent price decrease caused by exposure to mask manufacturing.

In Section 3.1.1, we noted that mask manufacturing exposure could be interpreted as

predicted mask purchases from manufacturers as a share of total mask purchases. Consistent

with this interpretation, a one-unit increase in mask manufacturing exposure causes an

approximately one-for-one increase in mask quantities purchased from manufacturers as a

share of total mask quantities purchased in April and May.

To interpret magnitudes of the impacts of mask manufacturing exposure on quantities,

we calculate that our April and May estimates of impacts on prices and quantities imply a

price elasticity of demand of 12.9 in April and 3.2 in May.11 These estimated elasticities are

larger than comparable estimates from Berry et al. (2020) (who find elasticities of between

0 and 4 over a range of prices) for water filters, consistent with the availability of a close

substitute for certified manufactured masks (non-certified masks) in these early months.

Third, licensed domestic mask manufacturing slowed the spread of COVID-19 at early

11To calculate these elasticities, we divide impacts on mask quantities from manufacturers as a share
of total quantities by its average value in each month (0.15 in April and 0.27 in May), and divide this
by impacts on log buyer price. In results available upon request, we recover similar elasticities when we
instead use Poisson pseudo maximum likelihood estimates of impacts on expected log mask quantities from
manufacturers.
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stages of the pandemic; however, trade frictions reduced access to certified masks in less

exposed sub-Districts, temporarily increasing infection growth and persistently increasing the

level of infections in less exposed sub-Districts. We scale impacts on COVID-19 infections,

as proxied by the number of purchases of paracetamol, by average mask manufacturing

exposure—by June, mask manufacturing had reduced COVID-19 infections nationally by

31%, corresponding to a 12% decrease in monthly infection growth.12 Similar to estimates

of price impacts, this estimate reflects a lower bound, because of both across-sub-District

transmission of COVID-19 and any across sub-District general equilibrium price effects.

While impacts on COVID-19 infections grew steadily through June, they remain constant

after—this implies that, while the impacts of domestic mask manufacturing on infection

growth persist through June, they dissipate after. This leaves persistent impacts on the level

of COVID-19 infections.

3.3.2 Interpreting impacts of mask manufacturing exposure on infections

To explain the dynamics of impacts on COVID-19 infections, we argue that the local im-

pacts of exposure to mask manufacturing that we document are mediated by substitution

away from informally produced masks toward formally manufactured masks, rather than by

increases in the use of masks. As discussed in Section 2.2, Rwanda had strict enforcement of

mask mandates and near-universal compliance starting April 19, suggesting that we should

not expect there to be differences in mask use between sub-Districts with high and low expo-

sure to licensed mask manufacturing; there may instead be differences in the types of masks

used (and, specifically, in quality). While we do not directly observe the quality of informally

manufactured masks in our data, the dynamics of these impacts lend support to quality as

the main mechanism driving a wedge in COVID-19 infections across high- and low-exposure

sub-Districts. We use the fact that, starting in June, national standards for mask quality

(which already applied to certified manufacturers) were expanded to non-licensed manufac-

1231% decline calculated using the June estimate from column 5 of table 2, scaled by average mask
manufacturing exposure (see Equation 1).
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turers, shutting down the informal sales of masks, while licensing was extended to all formal

garment manufacturers. Should quality be the main mechanism underlying our results, we

should then see the impacts of mask manufacturing exposure on both manufactured mask

purchases and COVID-19 infection growth fade over time. This is exactly what we observe.

In addition, the persistence of our impacts on prices rules out a quantity channel.

The implied impacts of certified mask use on COVID-19 infections, based on our esti-

mates, are consistent with existing empirical estimates of the impacts of high-quality masks

in other contexts. We calculate impacts of certified mask use by scaling our June impacts

on COVID-19 infections by the inverse of April impacts on mask purchases from licensed

manufacturers as a share of total mask purchases. As mask mandates were strictly enforced,

we interpret this scaled estimate as the effect of shifting a sub-District from not purchas-

ing formally manufactured masks (limited use of certified masks) to exclusively purchasing

formally manufactured masks (universal use of certified masks) at the early stages of the

pandemic. Certified mask use reduces monthly infection growth by 37%. In Appendix C,

we calculate estimates of closely related parameters from existing work; mask mandates for

employees in public-facing businesses in the United States reduce monthly case growth by

35% (Chernozhukov et al., 2021), while surgical mask use reduces monthly infection growth

by 18% in rural Bangladesh (Abaluck et al., 2021). The former estimate is statistically in-

distinguishable from ours, while the latter estimate is of impacts on villages (much smaller

than sub-Districts) for which cross-village spillovers are likely to render estimates more con-

servative. That these three estimates are comparable is consistent with large effects of mask

quality on COVID-19 transmission, in line with existing lab (Konda et al., 2020) and field

(Abaluck et al., 2021) evidence.
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4 Conclusion

In this paper, we show that an industrial policy aimed to increase the supply of high-quality

masks slowed the spread of COVID-19 in Rwanda. We leverage the licensing of textile

manufacturers to produce high-quality masks as a shock to mask production. To establish

causality, we exploit the fact that sub-Districts are more likely to source masks from the same

sub-Districts from which they source non-mask textiles, and yet non-mask textile sourcing

does not predict sub-District characteristics nor pre-licensing changes in sub-District out-

comes. Our results show licensing decreased mask prices and slowed the spread of COVID-19

in the early stages of the pandemic through increased access to formally manufactured masks.

A cost-benefit calculation suggests averted hospitalization costs from estimated impacts on

reduced COVID-19 infections were conservatively an order of magnitude larger than the

fiscal costs of promotion of domestic mask manufacturing.13

We establish three key results: exogenous exposure to licensed mask manufacturing

decreased mask prices, increased purchases of formally manufactured masks, and reduced

COVID-19 infections. Although we do not directly observe mask quality, the dynamics of

these impacts in the Rwandan context, where mask mandates were well enforced, suggest that

increased quality of masks, rather than increased use, explains our results. Taken together,

these results confirm the notion that constrained supply of high-quality masks accelerated

the spread of COVID-19 at the early stages of the pandemic. While our results leverage sub-

national variation in exposure to mask manufacturing, they suggest a similar role of access

to masks in explaining international variation in the progression of the pandemic—i.e., there

were not enough good masks.

13Details of this calculation are in Appendix J.
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online appendix

A Data appendix

A.1 EBM data

We use the universe of EBM transactions made through EBM II as our original data from

November 2019 through August 2020. EBM II is a software-based teller system introduced

in 2018 as an alternative to traditional physical EBMs (EBM I); additional details on each

are presented in Appendix A.1.1.A1 We restrict to data in November 2019 and later, because

the number of active EBM II devices in November increased by 50% relative to October, as

part of a large EBM II registration drive.A2

Coverage EBM is mandated for use by VAT taxpayers, described in Appendix A.3. Re-

ceipts issued by registered taxpayers are transmitted via an internet connection to the RRA.

In November 2019, EBM II recorded 81.8 billion RwF of value added, or 10.4% of GDP on

470,000 receipts.

Receipt data Each EBM is identified by a unique Sales Data Controller (SDC) ID, and is-

sues receipts which are digitally signed with a unique Sales Data Controller Receipt Signature

(SDCS). A fictitious EBM receipt is depicted in Appendix A.1.1. Each receipt enumerates

the transacted items, and records the prices at (and quantities in) which they were sold.

EBM II receipts include both a United Nations Standard Products and Services Code

(UNSPSC) classification code and detailed item descriptions for each item. We refer to

the item description as the product. Since each SDC is associated with a unique Taxpayer

A1EBMs, or Electronic Billing Machines, are no longer exclusively physical machines. For this rea-
son, Electronic Invoicing Systems (EIS) nomenclature is used as an umbrella term for both physical and
digital/software-based receipt generating systems. To align with the colloquial usage in Rwanda, in this
Appendix we refer to any official receipt generating system as EBM, and delineate versions when referring
to any specific form of EBM (EBM I, EBM II). In the body of the paper, for parsimony we refer to EBM II
as EBM, both because we do not use EBM I data for our analysis and also because of the relatively broad
coverage of EBM II.

A2Although EBM I offers more coverage before November 2019, these receipts are not comprehensively
stored in a machine readable format.
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Identification Number (TIN), the seller is identified in all transactions. If the buyer provides

their unique TIN for the transaction, both the buyer and the seller are identified by the

receipt.A3 Receipts are timestamped with the date and time of issue.A4

EBM location While an SDC is associated with one TIN, a firm may have multiple EBMs.

Since we do not observe the location of each SDC, we assume that the EBM is located in the

same sub-District as the firm. We use firm registration data to geo-locate firms (see Appendix

A.3 for a description of firm registration data). In November 2019, 95.5% of EBM II taxpayers

reported having only one EBM II device. We study the product market at the sub-District

level, the third administrative sub-division in Rwanda. Sub-district disaggregation allows

us to leverage sufficient geographic variation, while constituting a credible definition of a

market; the average sub-District has a population of 32,000 citizens and 1,000 registered

firms.

Since most EBM receipts identify both a buyer and a seller, we are able to map mask

supply chains from the sub-District of the seller to the sub-District of the buyer. We retain

a receipt-by-firm-product dataset (aggregated to a buyer sub-District-by-firm-product-by-

month dataset for our main analysis) to study mask prices and construct a balanced buyer

sub-District-by-month dataset to study purchases of masks and paracetamol across sub-

Districts.

Administrative use of EBM The primary purpose of EBM is to support the self-

enforcing design of the VAT (Pomeranz, 2015). Through the creation of a paper trail,

EBM increases the information with which the RRA can validate declarations and under-

take audits. In Rwanda, VAT input credits must be supported by EBM receipts, creating

an incentive for the buyer to both request and associate their TIN with a purchase receipt.

A3Since firms require receipts to claim input tax credits, we consider unidentified buyers as final consumers.
A4While transmission of the receipt to RRA can be delayed, either if software is malfunctioning or if the

internet connection is unstable, the RRA estimates 98% of total receipts due to be declared are transmitted
within two weeks.
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The nature of also creates sources of bias in our data; firms may seek to evade tax by over-

reporting their taxable inputs or under-reporting their taxable output. Similarly, firms may

under-report their turnover by neglecting to issue an EBM receipt to a (non-VAT) buyer.

A.1.1 The EBM Receipt

As described in Section 2.1, we employ electronic billing machine data from EBM devices

in Rwanda to isolate product prices and sales. We present a sample EBM receipt in Figure

A1. EBM II data is directly transmitted to and securely stored as data tables. We leverage

the following variables from the data:

• The price of the product

• The quantity of the products sold

– Units can be integers, or fractions (e.g., 0.200 of “Gouda cheese”)

– Negative unit values are often used by businesses to capture cancellations (note

“VOID”)

• A text description of the product (e.g., “Plain Bread”)

• The taxpayer’s identification number (TIN), and the SDC used to issue the receipt

• The purchaser’s identification number (Client ID)

• The exact time and date of the sale
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Figure A1: A fictitious EBM receipt
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A.1.2 EBM data construction

Our analysis of the EBM data is built on a dataset of prices and quantities at the buyer

sub-District-by-firm-product-by-month level. We construct the following outcomes from this

data:

Product description Each item in a receipt is accompanied by a free-fill description

entered by the firm (e.g., “Coca-cola 1.5l”). Firms enter these descriptions to EBM II

software when they receive new stock. EBM II subsequently prints the description of each

item at the point of sale.

Value and quantity To account for cancellations in the data, we aggregate over values

and quantities of receipt items on the same receipt, with the same item description, the same

price and the same product code. For the example in Figure A1 this creates a quantity and

value of the third and fourth item will be 1 + -1 = 0 and 1800 + -1800 = 0, respectively.

We remove products from our dataset which were voided or cancelled.

Price We take the following steps to improve measurement of prices. First, as described

in Section 3.1.2, we employ firm-product fixed effects in all analysis of prices to ensure that

we are appropriately comparing mask prices adjusting for quality differences across firm-

products. Second, we note that the units in which retailers report a sale of masks within

firm-product are sometimes imperfectly measured in the data. We therefore winsorize prices

within firm-product at the 5th and 95th percentiles.

We identify products using string descriptions. To identify masks and paracetamol, we

string match masks and paracetamol, respectively, in English, French, and Kinyarwanda

(e.g., mask, masque, agapfukamunwa) in product descriptions. We subsequently remove

products from this data, which satisfy the matching algorithm, but are not face masks. This

includes, for example, packaging for masks (“Mask Envelope”) or masks for nebulizers.
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Effective mask quantity For some analysis, we construct aggregate “effective”, or quality-

adjusted, mask quantities. To do so, we multiply observed mask quantities by a firm-product

specific measure of quality. To estimate this measure, we let prft be the price of firm-product

f on receipt r from month t, and estimate

log prft = τt + αf + ϵrft

We then construct effective mask quantity as Qrft ≡ exp(αf )Q
observed
rft , where Qobserved

rft is the

observed quantity of firm-product f on receipt r, and αf are the estimated firm-product

fixed effects from the log price regression above. In our main analysis, we construct effective

mask quantity from firms of type s by summing effective quantity within buyer sub-District-

by-month across firms of type s.

Product UNSPSC codes In order to determine the tax status of a product, firms classify

their inventory using United Nations Standard Products and Services Code (UNSPSC) codes.

We identify textile products (a product grouping) using UNSPSC codes 601058, 5310 and

2312. We ensure that the string descriptions conform to the UNSPSC product descriptions

for each code.
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A.1.3 EBM descriptive statistics

Table A1: Masks in EBM

Manufacturer Retailer/Trader Importer
(1) (2) (3)

# sub-Districts 44 137 91
# mask purchasing sub-Districts 44 135 91
# mask selling sub-Districts 14 52 15

# firms 410 1,408 1,109
# of mask purchasing firms 393 1,240 1,083
# of mask selling firms 23 285 51

# receipts 965 25,864 5,041
# of mask sales 1,025 26,261 5,112
# of masks 1,070,200 1,080,615 482,186

Mask sales, RwF 415,697,270 507,994,654 795,044,037

Notes: Summary statistics, either counts or total values, on mask sales in EBM during our study period are
reported in this table. Column 1 reports statistics on sales by manufacturers, Column 2 reports statistics
on sales by non-manufacturers excluding mask importers, and Column 3 reports statistics on sales by non-
manufacturer mask importers.

Table A2: Mask supply chains in EBM

Sales to (destination)
sub-District

Purchases from (origin)
sub-District

(1) (2)

sub-Districts 2.43 (2.36) 11.29 (11.32)

Firms 3.00 (3.75) 29.57 (40.58)

Receipts 14.85 (32.86) 68.93 (105.35)

Notes: Average counts on mask sales in EBM during our study period are reported in this table, with
standard deviations in parentheses. Column 1 reports counts for sales to each destination sub-District
(excluding destination sub-Districts with no purchases), while Column 2 reports counts for sales from each
origin sub-District (excluding origin sub-Districts with no sales).

A.2 Customs data

To compare the local and global mask markets we complement domestic EBM II data with

similarly granular international trade data.
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Coverage Customs data collected by the RRA contains the universe of tax-registered

importing firms based in Rwanda. Importing firms are identified by the same Taxpayer

Identification Number (TIN) which identifies a firm for domestic declarations (including

VAT).

Import data The data includes the imported value, weight, product unit, Harmonized

System (HS) product codes, an import origin and a timestamp at the point of entry. In

addition, two free-text string fields are populated with product descriptions by customs

officers. We identify masks using a combination of HS product codes, and product string

descriptions. Just as in EBM data, we exclude items outside the scope of our study (e.g.,

oxygen masks).

A.2.1 Customs data construction

Product descriptions At import, product descriptions are captured by RRA customs

officers at the border. We identify imports exclusively containing masks using string de-

scriptions. We subsequently remove products from customs data, which satisfy the matching

algorithm, but are not face masks.

Price The most salient difference for our research, between customs and EBM data is

that no natural price (per unit) variable exists in the international trade data. The data

does include the total imported value, as measured by the Cost, Insurance, Freight (CIF),

and several quantity variables including product quantity and Net Weight. As discussed in

Appendix A.1 units of quantity may vary. We use the import value and weight to construct

a mask price per unit of weight for transaction r made at the firm-border post combination

f in month t.

pimp
rft =

CIFrft

KGrft

We winsorize border prices at the 5th and 95th percentile.
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A.3 Additional appendix data sources

VAT Firms with turnover equal to or in excess of RwF 20 million ($20,000) annual turnover

(or the RwF 5 million ($5,000), for three consecutive quarters) are required to file VAT.

Among those filing VAT, small firms may file quarterly, while large are required to declare

by the 15th of each month. Firms who file VAT are required to report their sales using an

EBM device. EBM II data is subsequently used to verify VAT declarations.

A VAT declaration reports the total (taxable and non-taxable) sales of a firm. Since

this includes both EBM I and EBM II, VAT is a more comprehensive measure of turnover.

Since a VAT liability is determined by taxable outputs and inputs and the statutory tax rate

(18%), a VAT declaration requires a firm to report total tax paid on inputs, only.A5 VAT

does not require declarations of non-taxable input, as well as inputs from non-VAT registered

vendors. Consequently, EBM is often a more complete measure of a firm’s aggregate input.

In Appendix E.1, we use VAT turnover data to test the exogeneity of mask manufacturing

exposure. In Appendix D, we use VAT turnover data to to measure firm growth caused by

licensing.

PAYE Firms with employees are required to declare tax withholding on behalf of their

employees. Large firms declare PAYE on a monthly basis. With permission, small firms

declare PAYE on a quarterly basis. Employers who compensate an employee by 30,000

RwF (30 USD) or more per month are required to declare and pay PAYE on behalf of the

employee.A6

A PAYE declaration aggregates the total pay, allowances and benefit-in-kind (BIK) pro-

vided to the firm’s employees. In an annex to the declaration, firms enumerate each employee,

and report the compensation paid to each individual.

A5The tax code in Rwanda also provides for exemptions and a 0% rate for some products. See the VAT
law (https://www.rra.gov.rw/index.php?id=36) for more detail.

A6Additionally, firms who declare pension or other benefits on behalf of their employees may submit a
joint declaration, including PAYE. In cases where the income of the employee is less than 30,000 RwF (30
USD) per month this will not give rise to a tax withholding liability.
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In Appendix D we use firm reported employment and wage bill to understand the impact

of licensing on firm growth.

Firm registration Firm registration data contains firm-level details including the ISIC

sector classification, and the Province, District and sub-District in which the firm operates.

This data is collected when the firm is formally registered at the Rwanda Development Board

(RDB) and continuously monitored and updated by the RRA.

A.4 Time series of mask prices

To construct our time series of mask prices, we estimate the following equations to document

changes in both domestic prices and border prices of masks in Rwanda during the COVID-

19 pandemic. For both domestic and imported masks, we consider transactions between

November 2019 and August 2020.

Domestic mask prices To account for the composition of domestic mask sales, we con-

struct prices as mean log prices at the month-by-firm-product level. We let pft be the mean

log price of firm-product f sold domestically in month t. We then estimate

log pft =

Aug 2020∑
t=Nov 2019,t̸=Jan 2020

τt + αf + ϵft (A1)

where τt captures the change in log mask prices relative to January 2020, and αf is a

firm-product fixed effect that controls for any changes in the composition of masks sold do-

mestically. We report standard errors clustered at the sub-District of the firm. As discussed

in Section 2.2, starting April 2020 sales of domestically manufactured multi-layer masks grew

relative to sales of imported medical masks.

Border mask prices For border prices, we similarly construct mean log prices per unit

at the month-by-firm-border post level. Since unit mask prices are not naturally identified
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in the customs data, we prices per unit of weight, net of freight weight.A7 Further, as we are

unable to consistently identify products in the customs data, we use firm-border post fixed

effects to account for changes in the composition of mask imports. We let pimp
ft be the mean

log price of imported masks in customs data for firm-border post f in month t.

log pimp
ft =

Aug 2020∑
t=Nov 2019,t ̸=Jan 2020

τ imp
t + αf + ϵimp

ft (A2)

where τ imp
t captures the change in log border prices of masks relative to January 2020, and

αf is a firm-border post fixed effect that controls for any changes in the composition of im-

ported masks, assuming that variation in quality of imported masks and other unobservable

determinants of price does not systematically vary over time within firm-border post. We

report standard errors clustered at the firm level.

B Mask specifications and enforcement

B.1 Definition of mask quality

Guidelines for the manufacture of barrier masks were released by the Rwanda FDAA8 and

the Rwanda RSBA9 on April 17 and April 24, respectively. The guidelines released by the

RSB were gazetted in Rwandan Law in June 2020.A10 The guidelines include references to:

• Performance: ISO specifications for penetration (for solid and liquid particles), air

permanence (315-1265 µm/Pa.s), and mass per unit area (120-250 g/m2)

• Materials: cotton, viscose, polyester; multiple layers preferred

A7See Appendix A.2 for additional details on this construction.
A8https://rwandafda.gov.rw/web/index.php?id=36
A9https://www.rsb.gov.rw/fileadmin/user_upload/files/pdf/new_stds/RS_433-2_2020.pdf

A10https://www.rsb.gov.rw/fileadmin/user_upload/files/pdf/new_stds/National_Standards_

May_2020.pdf
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• Size: Four adult size specifications and three child specifications detailed (e.g., a small

adult mask should measure 280mm-306mm x 104mm-111mm)

• Labelling: The manufacturer’s name, the constituent material, recommended use pe-

riod, handling instructions

• Packaging: Masks should be packaged to protect masks from contamination or damage

B.2 Enforcement

Objective ISO testing metrics are outlined in the RSB’s standards guidelines, which were

gazetted into law in June 2020. Individual firms subsequently report subjecting their masks

to quality checks. As a supporting anecdote, Chillington Rwanda (with support from the

RSB) provided masks to the FDA for approval.A11 As another, UFACO & VLISCO NL LTD

reported inspections and compliance with the RSB standards before the masks were leave

the factory gate.A12

In an interview on May 7 with Kigali Today, the Quality Control Division Manager at the

RSB and the Director of Engineering Standards at the FDA discussed the issue of facemask

quality at markets, and underscored their role as quality auditors; masks found to be non-

compliant with standards were removed from markets, packaging should comply with the

RSB standards:A13

After the policies were published [April 17] we started the inspection which makes

me think that all face masks being manufactured now meet all the required stan-

dards

Director of Engineering Standards, FDA

A11https://www.msdhub.org/blog/learning-story-spotlight-chillington-rwanda-pathways-for-adaptation-and-growth-responding-to-societies-and-customers-needs
A12http://expressnews.rw/are-face-masks-safe-with-health-standards-for-users/
A13https://www.youtube.com/watch?v=en8RdSauF2g
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C Comparison to existing estimates of impacts of masks

on COVID-19 infections

To compare our estimates of the impacts of mask manufacturing exposure on purchases

of anti-fever medicine to existing estimates of the impacts of mask wearing on COVID-19

infections, we first provide assumptions under which purchases of anti-fever medicine are

a valid proxy for COVID-19 infections. To interpret purchases of anti-fever medicine as a

proxy for COVID-19 infections, we make two key assumptions, closely related to assumptions

in Abaluck et al. (2021) under which symptomatic seroprevalence for COVID-19 is a valid

proxy for symptomatic seroconversions. First, we assume that the percentage impacts of

mask manufacturing exposure on use of anti-fever medicine caused by COVID-19 are equal

to the percentage impacts of mask manufacturing exposure on COVID-19 infections. That

is, mask manufacturing exposure proportionally decreases COVID-19 infections that do and

do not result in use of anti-fever medicine. Second, we assume that the percentage impacts

of mask manufacturing exposure on use of anti-fever medicine caused by COVID-19 are

equal to the percentage impacts of mask manufacturing exposure on the use of anti-fever

medicine. This would be true if, for example, all use of anti-fever medicine is caused by

flu-like illnesses, and mask manufacturing exposure causes identical percentage decreases in

COVID-19 infections and other flu-like illnesses. In Appendix G, we show that increases in

purchases of anti-fever medicine are associated with increases in confirmed COVID-19 cases,

but our estimates are noisy due to relatively infrequent testing during our study period.

If both of these assumptions are true, then the percentage decrease in sales of anti-fever

medicine caused by mask manufacturing exposure is equal to the percentage decrease in

COVID-19 infections.

Next, we scale our estimates of impacts of mask manufacturing exposure for compara-

bility. We focus on our estimates without controls, and in particular of our estimate of the

impacts of mask manufacturing exposure on June sales of anti-fever medicine as a proxy for

A13



online appendix

COVID-19 infections. We divide this estimate by 3 to recover impacts on monthly growth

rates in infections – an increase in mask manufacturing exposure from 0 to 1 causes the

monthly growth rate of COVID-19 infections (defined as the ratio of COVID-19 infections in

the current month to COVID-19 infections in the previous month) to fall by 48%. We then

take two approaches to scaling this estimate. First, to evaluate the overall effect of mask

manufacturing in Rwanda, we multiply our estimates by the average mask manufacturing

exposure in our primary analysis sample (0.187), and interpret this as the effect of setting

mask manufacturing exposure equal to zero nationally. Alternatively, we divide our estimate

by the April impact on share of mask purchases from manufacturers (1.095), which we in-

terpret as the effect of households exclusively sourcing masks from manufacturers. Applying

the former, domestic mask manufacturing reduced the monthly growth rate of COVID-19

infections nationally by at least April through June. Applying the latter, shifting from

no manufactured masks to complete adoption of manufactured masks causes the monthly

growth rate of COVID-19 infections to fall by 45%.

We then compare this estimate to results from Chernozhukov et al. (2021) and Abaluck

et al. (2021). Chernozhukov et al. (2021) find that mandating employees wear masks holding

fixed behavior causes a 10% decrease in weekly case growth, which scales to a 35% decrease in

monthly case growth; this is statistically indistinguishable from our estimate of the impacts

of adoption of manufactured masks. Abaluck et al. (2021) find that promotion of masks

led to a 29pp increase in mask wearing in public, which over 8 weeks was associated with

an 11.2% reduction in symptomatic infections when surgical masks were provided. Scaling

this estimate by the inverse of their estimated impacts on mask adoption yields an 19%

decrease in monthly infection growth. These estimates suggest larger impacts of masks on

the spread of COVID-19 in the United States and in urban and peri-urban Rwanda than in

rural Bangladesh; alternatively, the source of variation in mask policy in Bangladesh is at

a much narrower geography (village) than in Rwanda and in the United States, suggesting

across-village spillovers may reduce estimated impacts of masks on the spread of COVID-19
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in Bangladesh.

D Impacts of licenses to produce masks on firms

D.1 Data

Sample As discussed in Section 2.2, the FDA provided licenses to garment manufacturers

for the production of barrier masks. We use the published list of licensed manufacturers

to identify 38 licensed manufacturers and identify an additional 43 garment manufacturers

using a combination of firm registration data and EBM product descriptions. Firm names,

as published by the FDA, were matched to TINs by RRA staff.

Data We construct a balanced panel of firms and aggregate outcomes to the firm-by-

quarter level. We construct outcomes from VAT, PAYE, and EBM data, and also use

customs data to construct pre-period firm characteristics.

D.2 Empirical strategy

To avert concerns pertaining to the impact of several heterogeneous economic shocks at the

pandemic’s outset, we study the impact of licensing on firms within the garment manufac-

turing sector, only. For a discussion of the sectoral heterogeneity underlying the COVID-19

shock in Rwanda, see Byrne et al. (2021).

We consider two approaches to identifying the impact of licensing on firms. Firstly, we

assume parallel trends in outcomes for licensed and non-licensed textile manufacturers absent

licensing. Under this assumption, we estimate the impact of licensing on firm i in quarter q,

with firm (θi) and quarter (γq) fixed effects:

yiq =

2020Q2∑
q=2019Q4,q ̸=2020Q1

βqDi + θi + γq + ϵiq (A3)
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where yiq is an observable business outcome and Di is an indicator that firm i was licensed to

manufacture masks. We produce estimates by either Poisson pseudo maximum likelihood, to

flexibly handle zeros in our main firm outcomes, or OLS. All impacts are relative to 2020Q1

(January 2020 through March 2020), the quarter before the April licensing of domestic textile

manufacturers.

However, the parallel trends assumption required to causally interpret β may not hold.

As noted in Section 2.2, firm licenses were issued following applications to the Rwanda FDA;

one possible concern is that larger firms with better access to inputs may be more likely to

apply for licenses. To address concerns the licensed firms may be larger or have better

access to inputs, we instead relax our parallel trends assumption, assuming it only holds

conditional on observable baseline firm characteristics. Specifically, we use log employment

and an importer indicator to construct a propensity matched sample of licensed and non-

licensed firms. We follow Ho et al. (2007) and create a balanced sample across licensed and

non-licensed firms, and enforce common support through trimming (see Cunningham (2021)

for a discussion of trimming in propensity score designs). We then follow Sant’Anna & Zhao

(2020) and estimate a doubly robust difference-in-difference specification, controlling for the

matching covariates Xi for firm i, while also restricting to the propensity score matched

sample.

yiq =

2020Q2∑
q=2019Q4,q ̸=2020Q1

βqDi +X ′
iηq + θi + γq + ϵiq (A4)

D.3 Balance

The matched and unmatched kernel densities of the estimated propensity score are displayed

in Figure A2. After matching, the two distributions appear more similar, with fewer low

propensity score non-licensed observations and high propensity score licensed observations.

A16



online appendix

Figure A2: Distribution of propensity scores across non-licensed and licensed firms are more
similar after matching

Next, we demonstrate that matched licensed and non-licensed firms have similar baseline

observable characteristics in Table Appendix A3.

Table A3: Propensity matched licensed and non-licensed textile manufacturers exhibit sta-
tistically similar baseline observables

Mask Manufacturers Textile Manufacturers Difference

Mean Std. dev # obs Mean Std. dev # obs p value

Turnover (VAT)
Inputs (RWF Mn) 4.850 6.758 29 7.402 10.191 29 0.267
Sales (RWF Mn) 43.002 101.186 29 22.136 35.881 29 0.302

Transactions (EBM)
Receipts 54.870 91.001 23 193.963 719.514 27 0.328
Buyers 15.783 32.072 23 67.259 216.772 27 0.233
Sellers 14.793 15.363 29 14.759 15.652 29 0.993
Products 22.652 33.793 23 32.889 33.578 27 0.290
Textile sale share 0.319 0.433 23 0.206 0.350 27 0.321

Labour (PAYE)
Employees 6.822 9.373 29 3.437 6.628 29 0.119
Labor Cost (RWF Mn) 4.744 8.964 29 1.152 2.440 29 0.045

International Trade (Customs)
Imports (RWF Mn) 13.044 44.093 29 7.059 18.733 29 0.505
Imports (KG 000) 3.441 11.501 29 3.000 9.221 29 0.872
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D.4 Results

We present the impacts of licenses to manufacture masks on textile manufactures in Table

A4. We report estimates using both Equations A3 (with no matching and no additional

controls) and A4 (with matching and additional controls).

First, we find no evidence of pre-licensing trends in outcomes across specifications with

and without matching. We interpret this as consistent with our assumption of parallel

trends absent licensing. Second, we estimate that licensing increases mask sales as a frac-

tion of turnover in the first three months of licensing by 42pp. This “first stage” estimate

demonstrates that licensed firms substantively increased their production of masks. Third,

we find suggestive evidence that firms reduced their non-mask turnover. This result is less

robust and more imprecise; however, we interpret it as consistent with licensed garment

manufacturers substituting away from production of other textiles, and into the production

of masks, potentially due to input adjustment frictions. Lastly, we fail to find evidence of

impacts of licensing on firm scale for any other business outcomes, including total turnover,

remuneration, and employment. This lack of impacts on firm scale can be explained by

garment manufacturers making competitive entry decisions into mask manufacturing.
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Table A4: Licensing causes firms to shift into mask production without firm growth

Dependent variable:

Mask Turnover Share Non Mask Turnover Turnover Turnover Labor Pay Employment

(1) (2) (3) (4) (5) (6)

Panel I: Unmatched

Treat x Q4 (u)
-0.038
(0.036)
[0.298]

-0.306
(0.317)
[0.334]

-0.323
(0.313)
[0.302]

0.022
(0.139)
[0.871]

0.206
(0.176)
[0.240]

0.181
(0.204)
[0.375]

Treat x Q1 (u) - - - - - -

Treat x Q2 (u)
0.420
(0.098)
[0.000]

-0.422
(0.238)
[0.076]

0.080
(0.258)
[0.756]

0.137
(0.209)
[0.513]

0.358
(0.291)
[0.219]

-0.003
(0.193)
[0.989]

# observations (u) 134 150 153 234 117 117
Controls x Quarter FE (u)

Panel II: Matched

Treat x Q4 (m)
-0.008
(0.039)
[0.846]

0.281
(0.338)
[0.406]

0.146
(0.318)
[0.646]

-0.168
(0.171)
[0.327]

0.081
(0.340)
[0.812]

0.473
(0.502)
[0.346]

Treat x Q1 (m) - - - - - -

Treat x Q2 (m)
0.428
(0.124)
[0.001]

-0.423
(0.305)
[0.166]

-0.210
(0.256)
[0.411]

0.273
(0.192)
[0.155]

0.052
(0.454)
[0.909]

-0.013
(0.306)
[0.965]

# observations (m) 96 108 111 165 90 90
Controls x Quarter FE (m) X X X X X X

Data EBM EBM EBM VAT PAYE PAYE
Estimation method OLS Poisson Poisson Poisson Poisson Poisson
Firm FE X X X X X X
Quarter FE X X X X X X

E Additional placebo checks

E.1 Impacts of manufactured mask exposure on turnover in VAT

As discussed in Appendix A.1, our primary outcomes in our analysis of the impacts of mask

manufacturing exposure in Section 3 are only observable in EBM II, which lacks sufficient

coverage prior to November 2019. As a complement, we leverage value added tax data (de-

scribed in Appendix A.3) on total sub-District turnover that we extend back to the first

quarter of 2019 to test for parallel trends prior to the availability of EBM II data. We esti-

mate Equation 2, our primary estimating equation for the impacts of mask manufacturing

exposure, over quarters instead of months and with the first quarter of 2020 as the omitted

quarter, and present estimated quarterly coefficients in Figure A3. We find no evidence that
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mask manufacturing exposure had impacts on sub-District turnover up to one year prior to

licensing, although our confidence intervals include relatively large impacts of mask manu-

facturing exposure on turnover. We interpret this result as consistent with our assumption

of the exogeneity of mask manufacturing exposure.

Figure A3: No impacts of mask manufacturing exposure on turnover before licensing

F Robustness of estimated impacts of manufactured

mask exposure

F.1 Without jackknife

In Section 3.1.1, we constructed our measure of destination sub-District mask manufacturing

exposure in Equation 1 by calculating average mask manufacturing intensity across origin

sub-Districts weighted by the destination sub-Districts share of non-mask textiles sourced
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from each origin sub-District except the destination sub-District. This “jackknife” procedure

is intended to alleviate the following endogeneity concern: if sub-Districts source a large

share of their textiles locally, including masks, then a large mask demand shock could cause

an increase in local mask manufacturing intensity, causing mask manufacturing exposure

to be endogenous to mask demand. Although this concern would not affect our results in

Table 2 for which we use our jackknife construction of mask manufacturing exposure, we

nonetheless test for this possibility by replicating our results on balance with respect to and

impacts of mask manufacturing exposure in Tables 1 and 2, respectively, constructing mask

manufacturing exposure without excluding non-mask textiles sourced from the destination

sub-District. We report our results without jackknife on balance and impacts in Tables A5

and A6, respectively. The patterns in the results we describe in Sections 3.2 and 3.3 are

unaffected by constructing mask manufacturing exposure without jackknife.
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Table A5: Mask manufacturing exposure without jackknife remains uncorrelated with sub-
District observables

Dependent variable:

Mask manufacturing intensity Mask manufacturing exposure

(1) (2) (3) (4) (5) (6)

log EBM turnover, RwF Bn −0.000 −0.080 −0.025 −0.027 −0.019 −0.020
(0.076) (0.096) (0.015) (0.016) (0.017) (0.019)
[0.997] [0.408] [0.098] [0.096] [0.266] [0.278]

log EBM input, RwF Bn −0.115 0.017 0.058 0.067 0.050 0.053
(0.124) (0.151) (0.033) (0.034) (0.038) (0.039)
[0.361] [0.910] [0.084] [0.056] [0.194] [0.180]

log population density −0.104 −0.080 −0.039 −0.041 −0.035 −0.050
(0.068) (0.066) (0.039) (0.037) (0.045) (0.042)
[0.136] [0.234] [0.326] [0.268] [0.437] [0.244]

% completed primary school 0.015 0.000 −0.001 −0.002 0.001 0.002
(0.018) (0.019) (0.002) (0.002) (0.002) (0.003)
[0.392] [0.999] [0.715] [0.418] [0.559] [0.514]

% employed −0.012 0.009 −0.013 −0.004 −0.008 −0.002
(0.024) (0.026) (0.009) (0.009) (0.010) (0.011)
[0.628] [0.732] [0.175] [0.669] [0.416] [0.867]

log textile manufacturers 0.183 0.169 −0.028 −0.024 −0.015 −0.007
(0.131) (0.128) (0.036) (0.036) (0.044) (0.044)
[0.173] [0.198] [0.445] [0.507] [0.734] [0.874]

log population 0.069 0.055 −0.010 −0.033 −0.037 −0.042
(0.163) (0.145) (0.051) (0.064) (0.055) (0.071)
[0.677] [0.708] [0.849] [0.611] [0.501] [0.560]

Province FE X X X
Residualized shocks X X
# observations 43 43 88 88 88 88
# clusters (sub-Districts) 43 43 88 88 88 88
Omnibus F 0.63 0.99 1.1 0.97 1.55 0.83

[0.728] [0.454] [0.373] [0.460] [0.163] [0.569]
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Table A6: Mask manufacturing exposure without jackknife increases purchases of masks
from manufacturers, decreases mask prices, and reduces COVID-19 infections

Dependent variable:

log buyer price Eff mask Q from manufacturers
Eff mask Q

# paracetamol receipts

(1) (2) (3) (4) (5) (6)

Mask manufacturing exposured × Novt

0.296
(0.646)
[0.648]

0.287
(0.630)
[0.649]

-0.011
(0.106)
[0.914]

0.142
(0.194)
[0.467]

0.196
(0.883)
[0.824]

-0.092
(0.781)
[0.906]

Mask manufacturing exposured ×Dect

0.221
(0.725)
[0.761]

0.319
(0.740)
[0.667]

0.033
(0.097)
[0.736]

0.121
(0.208)
[0.562]

-0.083
(0.623)
[0.894]

-0.277
(0.549)
[0.614]

Mask manufacturing exposured × Jant

0.057
(0.403)
[0.887]

-0.097
(0.333)
[0.771]

0.019
(0.100)
[0.853]

0.256
(0.209)
[0.223]

0.077
(0.624)
[0.902]

0.363
(0.647)
[0.574]

Mask manufacturing exposured × Febt

0.396
(0.342)
[0.249]

0.423
(0.299)
[0.161]

0.018
(0.079)
[0.823]

0.138
(0.181)
[0.448]

0.012
(0.700)
[0.986]

0.529
(0.741)
[0.476]

Mask manufacturing exposured ×Mart - - - - - -

Mask manufacturing exposured × Aprt

-0.484
(0.303)
[0.113]

-0.566
(0.288)
[0.053]

1.165
(0.226)
[0.000]

0.985
(0.399)
[0.015]

0.104
(0.818)
[0.899]

-0.445
(0.953)
[0.641]

Mask manufacturing exposured ×Mayt

-0.545
(0.311)
[0.083]

-0.637
(0.280)
[0.025]

0.578
(0.158)
[0.000]

0.437
(0.299)
[0.147]

-1.107
(0.641)
[0.084]

-1.091
(0.578)
[0.059]

Mask manufacturing exposured × Junt

-0.617
(0.382)
[0.110]

-0.719
(0.397)
[0.074]

0.135
(0.177)
[0.446]

0.511
(0.289)
[0.080]

-1.798
(0.706)
[0.011]

-1.639
(0.583)
[0.005]

Mask manufacturing exposured × Jult

-0.184
(0.301)
[0.543]

-0.255
(0.292)
[0.386]

0.403
(0.143)
[0.006]

0.414
(0.256)
[0.109]

-1.719
(0.760)
[0.024]

-1.536
(0.725)
[0.034]

Mask manufacturing exposured × Augt

-0.470
(0.269)
[0.084]

-0.550
(0.231)
[0.019]

-0.088
(0.189)
[0.643]

0.028
(0.308)
[0.927]

-1.459
(0.828)
[0.078]

-1.473
(0.835)
[0.078]

Estimation method OLS OLS OLS OLS Poisson Poisson

Firm-product FE X X

Destination sub-District FE X X X X X X

Month FE X X X X X X

Residualized shocks X X X

Controls × Month FE X X X

# observations 3,942 3,942 511 511 800 800

# clusters (sub-Districts) 88 88 88 88 80 80
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F.2 Parallel pre-trends pre-test robustness

In Table 2, we both test for parallel pre-trends with respect to mask manufacturing exposure

and estimate impacts of mask manufacturing exposure; when analysis is reported conditional

on passing tests for parallel pre-trends, estimates of impacts and inference may be biased

(Roth, 2021). However, Borusyak et al. (2021b) demonstrate that that under homoskedas-

ticity, this concern is eliminated in specifications that pool across pre-treatment periods to

estimate a counterfactual for post-treatment periods. Specifically, we modify Equation 2 and

estimate

ydt =

Aug 2020∑
t=Apr 2020

βtMask manufacturing exposured +X ′
dδt + θd + γt + ϵdt (A5)

Equation A5 differs from Equation 2 in that it imposes parallel trends prior to treatment,

separating tests of parallel trends from estimation. We report estimates of Equation A5 in

Table A7. The patterns in the results we describe in Section 3.3 are unaffected by imposing

parallel trends prior to treatment.
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Table A7: Mask manufacturing exposure increases purchases of masks from manufactur-
ers, decreases mask prices, and reduces COVID-19 infections when parallel pre-trends are
imposed

Dependent variable:

log buyer price Eff mask Q from manufacturers
Eff mask Q

# paracetamol receipts

(1) (2) (3) (4) (5) (6)

Mask manufacturing exposured × Pret - - - - - -

Mask manufacturing exposured × Aprt

-0.768
(0.171)
[0.000]

-0.678
(0.214)
[0.002]

1.076
(0.220)
[0.000]

0.853
(0.353)
[0.018]

0.047
(1.150)
[0.967]

-0.244
(1.083)
[0.822]

Mask manufacturing exposured ×Mayt

-0.925
(0.190)
[0.000]

-0.753
(0.229)
[0.001]

0.511
(0.161)
[0.002]

0.370
(0.231)
[0.113]

-1.338
(1.029)
[0.193]

-1.473
(0.995)
[0.139]

Mask manufacturing exposured × Junt

-0.890
(0.257)
[0.001]

-0.870
(0.364)
[0.019]

0.178
(0.174)
[0.309]

0.393
(0.223)
[0.081]

-2.127
(1.076)
[0.048]

-1.892
(0.942)
[0.045]

Mask manufacturing exposured × Jult

-0.441
(0.222)
[0.051]

-0.395
(0.244)
[0.110]

0.423
(0.126)
[0.001]

0.278
(0.185)
[0.136]

-2.132
(1.142)
[0.062]

-1.853
(0.987)
[0.061]

Mask manufacturing exposured × Augt

-0.735
(0.139)
[0.000]

-0.684
(0.153)
[0.000]

-0.156
(0.184)
[0.401]

-0.088
(0.248)
[0.724]

-1.894
(1.312)
[0.149]

-1.668
(1.094)
[0.127]

Estimation method OLS OLS OLS OLS Poisson Poisson

Firm-product FE X X

Destination sub-District FE X X X X X X

Month FE X X X X X X

Residualized shocks X X X

Controls x Month FE X X X

# observations 3,937 3,937 506 506 780 780

# clusters (sub-Districts) 86 86 86 86 78 78

F.3 Controls

In Section 3.3, we presented impacts of mask manufacturing exposure using two specifi-

cations: first, one that omits controls interacted with month fixed effects and does not

residualize mask manufacturing intensity on controls before constructing mask manufactur-

ing exposure, and second, one that includes controls interacted with month fixed effects and

residualizes mask manufacturing intensity on controls before constructing mask manufactur-
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ing exposure. These specifications correspond to the balance tests in Columns 3 and 6 of

Table 1. In Table A8, we also present impacts of mask manufacturing exposure with two

additional specifications corresponding to the balance tests in Columns 4 and 5 of Table 1:

first, one the includes controls interacted with month fixed effects but does not residualize

mask manufacturing intensity on controls before constructing mask manufacturing exposure,

and second, one that does not include controls interacted with month fixed effects but does

residualize mask manufacturing intensity on controls before constructing mask manufactur-

ing exposure. In general, the patterns in the results we describe in Section 3.3 are robust to

these two alternate specifications; we note that impacts on mask purchases from manufactur-

ers become larger in specifications that residualize mask manufacturing intensity on controls

before constructing mask manufacturing exposure, and become smaller in specifications that

include controls interacted with month fixed effects, and as a result specifications that either

do neither or both of these have similar effects, but this does not qualitatively affect our

results.
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Table A8: Mask manufacturing exposure increases purchases of masks from manufacturers,
decreases mask prices, and reduces COVID-19 infections across alternative approaches to
including controls

Dependent variable:

log buyer price Eff mask Q from manufacturers
Eff mask Q

# paracetamol receipts

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Mask manufacturing exposured × Novt

0.445
(0.680)
[0.514]

0.437
(0.640)
[0.496]

0.219
(0.654)
[0.738]

0.263
(0.666)
[0.694]

-0.016
(0.123)
[0.897]

0.256
(0.198)
[0.200]

-0.088
(0.156)
[0.573]

0.155
(0.202)
[0.444]

0.588
(1.040)
[0.572]

-0.021
(0.961)
[0.983]

0.611
(0.957)
[0.524]

0.029
(0.859)
[0.973]

Mask manufacturing exposured ×Dect

0.173
(0.732)
[0.814]

-0.601
(0.734)
[0.415]

0.293
(0.648)
[0.653]

0.199
(0.717)
[0.782]

0.035
(0.114)
[0.760]

0.281
(0.202)
[0.168]

-0.042
(0.142)
[0.770]

0.135
(0.214)
[0.531]

0.267
(0.734)
[0.716]

-0.182
(0.690)
[0.792]

0.132
(0.612)
[0.829]

-0.194
(0.618)
[0.753]

Mask manufacturing exposured × Jant

0.296
(0.383)
[0.441]

0.107
(0.349)
[0.760]

0.060
(0.390)
[0.878]

-0.101
(0.343)
[0.769]

0.057
(0.115)
[0.620]

0.237
(0.208)
[0.259]

0.034
(0.143)
[0.815]

0.224
(0.211)
[0.290]

0.254
(0.685)
[0.711]

0.366
(0.760)
[0.630]

0.058
(0.558)
[0.917]

0.415
(0.685)
[0.545]

Mask manufacturing exposured × Febt

0.367
(0.374)
[0.328]

0.273
(0.330)
[0.410]

0.482
(0.337)
[0.156]

0.393
(0.318)
[0.219]

0.046
(0.089)
[0.608]

0.189
(0.185)
[0.308]

-0.008
(0.114)
[0.947]

0.130
(0.181)
[0.475]

-0.080
(0.723)
[0.912]

0.413
(0.857)
[0.629]

-0.175
(0.615)
[0.775]

0.524
(0.752)
[0.485]

Mask manufacturing exposured ×Mart - - - - - - - - - - - -

Mask manufacturing exposured × Aprt

-0.521
(0.311)
[0.098]

-0.574
(0.321)
[0.078]

-0.606
(0.289)
[0.039]

-0.600
(0.300)
[0.049]

1.095
(0.252)
[0.000]

1.377
(0.285)
[0.000]

0.697
(0.356)
[0.054]

0.973
(0.413)
[0.021]

0.208
(0.832)
[0.803]

0.110
(0.888)
[0.901]

-0.174
(0.809)
[0.829]

-0.393
(0.953)
[0.680]

Mask manufacturing exposured ×Mayt

-0.613
(0.327)
[0.064]

-0.611
(0.292)
[0.040]

-0.772
(0.344)
[0.027]

-0.673
(0.290)
[0.023]

0.533
(0.179)
[0.004]

0.724
(0.276)
[0.010]

0.404
(0.221)
[0.071]

0.464
(0.303)
[0.130]

-1.178
(0.730)
[0.107]

-0.689
(0.584)
[0.238]

-1.405
(0.752)
[0.062]

-1.056
(0.565)
[0.062]

Mask manufacturing exposured × Junt

-0.671
(0.391)
[0.089]

-0.723
(0.418)
[0.088]

-0.792
(0.396)
[0.049]

-0.792
(0.423)
[0.065]

0.196
(0.194)
[0.316]

0.581
(0.349)
[0.099]

0.212
(0.215)
[0.328]

0.513
(0.293)
[0.083]

-1.968
(0.728)
[0.007]

-1.561
(0.626)
[0.013]

-1.824
(0.698)
[0.009]

-1.669
(0.571)
[0.003]

Mask manufacturing exposured × Jult

-0.210
(0.309)
[0.499]

-0.295
(0.319)
[0.357]

-0.396
(0.317)
[0.215]

-0.316
(0.314)
[0.318]

0.438
(0.136)
[0.002]

0.656
(0.262)
[0.014]

0.237
(0.188)
[0.211]

0.398
(0.262)
[0.132]

-1.973
(0.825)
[0.017]

-1.668
(0.841)
[0.047]

-1.785
(0.749)
[0.017]

-1.619
(0.753)
[0.032]

Mask manufacturing exposured × Augt

-0.460
(0.272)
[0.095]

-0.663
(0.284)
[0.022]

-0.498
(0.251)
[0.050]

-0.606
(0.251)
[0.018]

-0.138
(0.197)
[0.485]

0.174
(0.315)
[0.583]

-0.318
(0.253)
[0.212]

0.031
(0.311)
[0.920]

-1.734
(0.918)
[0.059]

-1.531
(1.007)
[0.129]

-1.600
(0.785)
[0.041]

-1.564
(0.862)
[0.070]

Estimation method OLS OLS OLS OLS OLS OLS OLS OLS Poisson Poisson Poisson Poisson

Firm-product FE X X X X

Destination sub-District FE X X X X X X X X X X X X

Month FE X X X X X X X X X X X X

Residualized shocks X X X X X X

Controls × Month FE X X X X X X

# observations 3,937 3,937 3,937 3,937 506 506 506 506 780 780 780 780

# clusters (sub-Districts) 86 86 86 86 86 86 86 86 78 78 78 78

F.4 Price aggregation

In Section 3.3, we found that mask manufacturing exposure causes persistent decreases in

mask prices after licensing. Because comparing prices across distinct products is challenging,

we used as outcomes mean log buyer prices at the firm-product-by-month-by-destination

(buyer) sub-District level, and included firm-product fixed effects in our analysis of impacts

on prices. This construction of log buyer price is different from our other outcomes, for which

we simply aggregated to the month-by-destination sub-District level. To test robustness of

this construction, we instead leave the outcome log buyer price at the firm-product-by-

receipt level (rather than aggregating), and present impacts on this outcome in Table A9.

The patterns in the results we describe in Section 3.3 are robust to this alternative approach
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to constructing prices; although the magnitudes of impacts are often somewhat larger when

we do not aggregate, they are also less precisely estimated.
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Table A9: Mask manufacturing exposure decreases mask prices across multiple approaches
to constructing prices

Dependent variable:

log mask price Avg log mask price

(1) (2) (3) (4)

Mask manufacturing exposured × Novt 0.444 0.272 0.445 0.263
(1.059) (0.898) (0.680) (0.666)
[0.677] [0.763] [0.515] [0.694]

Mask manufacturing exposured ×Dect −0.245 0.181 0.173 0.199
(0.940) (0.940) (0.732) (0.717)
[0.796] [0.848] [0.814] [0.783]

Mask manufacturing exposured × Jant 0.359 0.235 0.296 −0.101
(0.520) (0.416) (0.383) (0.343)
[0.492] [0.574] [0.442] [0.770]

Mask manufacturing exposured × Febt −0.545 −0.568 0.367 0.393
(0.616) (0.551) (0.374) (0.318)
[0.380] [0.306] [0.329] [0.220]

Mask manufacturing exposured ×Mart - - - -

Mask manufacturing exposured × Aprt −0.475 −0.839 −0.521 −0.600
(0.514) (0.433) (0.311) (0.300)
[0.358] [0.056] [0.098] [0.049]

Mask manufacturing exposured ×Mayt −0.783 −1.149 −0.613 −0.673
(0.788) (0.644) (0.327) (0.290)
[0.324] [0.079] [0.065] [0.023]

Mask manufacturing exposured × Junt −1.069 −1.402 −0.671 −0.792
(0.812) (0.637) (0.391) (0.423)
[0.192] [0.031] [0.090] [0.065]

Mask manufacturing exposured × Jult −0.561 −1.003 −0.210 −0.316
(0.798) (0.647) (0.309) (0.314)
[0.484] [0.125] [0.499] [0.319]

Mask manufacturing exposured × Augt −0.890 −1.144 −0.460 −0.606
(0.805) (0.702) (0.272) (0.251)
[0.273] [0.107] [0.096] [0.018]

Destination sub-District FE X X X X
Aggregated log price X X
Firm-product FE X X X X
Controls × Month FE X X
Resizualized shocks X X
# clusters (sub-Districts) 86 86 86 86
# of observations 32,110 32,110 3,937 3,937
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F.5 Measurement of mask purchases from manufacturers

In Appendix A.1.2 we describe the construction of effective mask quantities which account

for heterogeneous quality (and other unobservable determinants of price) across masks. In

Table A10, we demonstrate that when constructing the outcome share of masks purchased

from manufacturers, using either effective quantities or expenditures delivers statistically

indistinguishable results. While expenditures are simpler to construct, estimated impacts on

share of effective mask quantities purchased from manufacturers can be used to more directly

recover price elasticities of demand, and as a result our preferred estimates use effective mask

quantities.
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Table A10: Mask manufacturing exposure decreases mask prices across multiple approaches
to constructing prices

Dependent variable:

Eff mask Q from manufacturers
Real mask Q

Mask purchases from manufacturers
Mask purchases

(1) (2) (3) (4)

Mask manufacturing exposured × Novt

-0.016
(0.123)
[0.897]

0.155
(0.202)
[0.444]

-0.030
(0.156)
[0.850]

0.098
(0.249)
[0.696]

Mask manufacturing exposured ×Dect

0.035
(0.114)
[0.760]

0.135
(0.214)
[0.531]

0.026
(0.148)
[0.861]

0.116
(0.258)
[0.653]

Mask manufacturing exposured × Jant

0.057
(0.115)
[0.620]

0.224
(0.211)
[0.290]

0.053
(0.148)
[0.723]

0.202
(0.251)
[0.424]

Mask manufacturing exposured × Febt

0.046
(0.089)
[0.608]

0.130
(0.181)
[0.475]

0.027
(0.114)
[0.812]

0.115
(0.210)
[0.584]

Mask manufacturing exposured ×Mart - - - -

Mask manufacturing exposured × Aprt

1.095
(0.252)
[0.000]

0.973
(0.413)
[0.021]

0.999
(0.281)
[0.001]

0.896
(0.465)
[0.057]

Mask manufacturing exposured ×Mayt

0.533
(0.179)
[0.004]

0.464
(0.303)
[0.130]

0.504
(0.204)
[0.015]

0.446
(0.324)
[0.173]

Mask manufacturing exposured × Junt

0.196
(0.194)
[0.316]

0.513
(0.293)
[0.083]

0.254
(0.223)
[0.258]

0.518
(0.314)
[0.103]

Mask manufacturing exposured × Jult

0.438
(0.136)
[0.002]

0.398
(0.262)
[0.132]

0.514
(0.148)
[0.001]

0.448
(0.275)
[0.107]

Mask manufacturing exposured × Augt

-0.138
(0.197)
[0.485]

0.031
(0.311)
[0.920]

-0.111
(0.221)
[0.617]

-0.017
(0.341)
[0.960]

Estimation method OLS OLS OLS OLS

Firm-by-product FE

Destination sub-District FE X X X X

Month FE X X X X

Residualized shocks X X

Controls × Month FE X

# observations 506 506 506 506

# clusters (sub-Districts) 86 86 86 86

G Number of paracetamol receipts as a proxy for COVID-

19 infections

In Section 3.1.2, we used number of purchases of paracetamol, a commonly recommended

fever medicine, as a proxy for COVID-19 infections, absent data on sub-District COVID-
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19 infections and given limited testing capacity during the early months of the COVID-

19 pandemic. In this section, we leverage data on COVID-19 infections at the District

level to test the validity of number of purchases of paracetamol as a proxy for COVID-19

infections. Specifically, we estimate the association between increases in number of purchases

of paracetamol and COVID-19 infections, and test whether a 1% increase in number of

purchases of paracetamol is associated with a 1% increase in COVID-19 infections. We fail

to reject this null in our preferred specifications, although we have limited statistical power

due to relatively limited testing during our study period.

Data We gather daily confirmed District-level COVID-19 case counts from the Rwanda

Biomedical Centre’s COVID-19 operations dashboard.A14 We aggregate confirmed COVID-

19 case counts to the District-by-month level. For comparison, we aggregate our sub-District-

by-month data on number of purchases of paracetamol (used as an outcome in Table 2) to

the District-by-month level.

Empirical strategy To estimate the association between number of purchases of parac-

etamol and COVID-19 infections, we estimate by Poisson pseudo maximum likelihood

logE[COVID-19 casesdt| log# paracetamol receiptsdt, Xdt] =

β log# paracetamol receiptsdt +X ′
dtδ (A6)

where Xdt is a vector of control variables; we include either a constant, destination District

fixed effects, month fixed effects, or destination District fixed effects, month fixed effects,

and controls interacted with month fixed effects. As in Table 2, the controls interacted with

month fixed effects are Province fixed effects, log population density, and log number of

textile manufacturers. Our preferred specification includes both sets of fixed effects along

with controls interacted with month fixed effects, as this mirrors our specification with full

A14https://gis.rbc.gov.rw/portal/apps/opsdashboard/index.html#/59872985985446bbaf8c394ad857c5cd
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controls in Table 2.

Table A11: Increases in number of paracetamol receipts are associated with increased
COVID-19 cases

Dependent variable:

Confirmed COVID-19 cases

(1) (2) (3) (4)

log # paracetamol receipts
0.496
(0.175)
[0.005]

1.397
(0.792)
[0.078]

0.482
(0.169)
[0.004]

0.552
(0.738)
[0.455]

Estimation method Poisson Poisson Poisson Poisson

Controls × Month FE X

Month FE X X

Destination District FE X X

# observations 158 140 158 124

# clusters (Districts) 29 24 29 24

Results We present estimates of Equation A6 in Table A11. Across specifications, we

find a 1% increase in the number of paracetamol receipts is associated with between a 0.5%

and 1.4% increase in COVID-19 cases; this is relative to the 1% increase we would expect if

number of paracetamol receipts were exactly proportional to COVID-19 infections. All of our

point estimates are positive and of expected magnitude; however, many of these estimates

are noisy, and in our preferred specification we can neither reject that a 1% increase in the

number of paracetamol receipts is associated with a 0% nor a 1% increase in the number of

COVID-19 cases, due to relatively limited testing during our study period that motivates

our use of a proxy.
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H Trade cost estimation

Empirical strategy As in Section 3.1.1, we aggregate non-mask textile trade values to

total bilateral flows Tod from origin sub-District o to destination sub-District d. We then

measure distances between sub-Districts using sub-District centroids, and remove intra-sub-

District trade from our data. We follow Silva & Tenreyro (2006) and estimate a gravity

equation by Poisson pseudo maximum likelihood.

logE[Tod| log distanceod, θo, γd, Xod] = β log distanceod +X ′
odδ + θo + γd (A7)

We estimate specifications with no controls, and controlling for an indicator that origin

sub-District o and destination sub-District d are located in the same Province.

Results We present estimates of Equation A7 in Table A12. We find a 10% increase in

distance between sub-Districts decreases non-mask textile trade by 6.3%-6.8%, with 6.8%

our preferred point estimate from a specification without controls. We use this to interpret

a 10% increase in distance to mask manufacturing as generating a 6.8% decrease in mask

manufacturing exposure. Multiplying this by the average mask manufacturing exposure in

our primary analysis sample (0.188), a 10% increase in distance to mask manufacturing

generates a 0.013 decrease in mask manufacturing exposure. We use this value to interpret

our estimates of impacts of mask manufacturing exposure on prices in Section 3.3.1.
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Table A12: Non-mask textile trade between sub-Districts is decreasing in distance

Dependent variable:

Non-mask textile purchasesod∑
o Non-mask textile purchasesod

(1) (2)

log distanceod

-0.682
(0.095)
[0.000]

-0.632
(0.183)
[0.001]

Estimation method Poisson Poisson

Intra-provincial trade dummy X

Origin (sub-District) FE X X

Destination (sub-District) FE X X

# observations 27,881 27,881

# clusters (sub-Districts) 329 329

I Mask manufacturing exposure and purchases of masks

from manufacturers

Interpretation of mask manufacturing exposure In Section 3.1.1, we noted that

mask manufacturing exposure can be interpreted as predicted purchases of domestically

manufactured masks as a share of total purchases of masks.

Mask manufacturing exposured ≡
∑
o

Tod∑
o′ To′d︸ ︷︷ ︸

non-mask textile purchase share

×
∑

d′ ̸=d M
mnf
od′∑

d′ ̸=d M
mnf
od′ +Moth

od′︸ ︷︷ ︸
jackknife mask manufacturing intensity

≈
∑
o

Mmnf
od +Moth

od∑
o′ M

mnf
o′d +Moth

o′d︸ ︷︷ ︸
mask purchase share

× Mmnf
od

Mmnf
od +Moth

od︸ ︷︷ ︸
own mask manufacturing intensity

=

∑
o M

mnf
od∑

o M
mnf
od +Moth

od
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Mask manufacturing exposure does not equal domestically manufactured masks as a share of

total purchases of masks for two reasons. First, the share of destination sub-District d’s non-

mask textiles purchased from origin sub-District o does not equal the share of destination

sub-District d’s masks purchased from origin sub-District o. Second, origin sub-District

o’s mask manufacturing intensity leaving out destination sub-District d does not equal its

destination sub-District d-specific mask manufacturing intensity. In Section 3.1.1, we argued

that mask manufacturing exposure is exogenous. However, for mask manufacturing exposure

to impact purchases of masks, it should be the case that non-mask textiles purchases from

origin sub-District o predict masks purchased from origin sub-District o and origin sub-

District o’s mask manufacturing intensity leaving out destination sub-District d predicts

destination sub-District d-specific mask manufacturing intensity.

Empirical strategy We test whether non-mask textiles purchased from origin sub-District

o predict masks purchased from origin sub-District o, and whether origin sub-District o’s

mask manufacturing intensity leaving out destination sub-District d predicts destination

sub-District d-specific mask manufacturing intensity. We estimate

Mmnf
od +Moth

od∑
o′ M

mnf
o′d +Moth

o′d

= β
Tod∑
o′ To′d

+X ′
odδ + θo + γd + ϵod (A8)

Mmnf
od

Mmnf
od +Moth

od

= β

∑
d′ ̸=d M

mnf
od′∑

d′ ̸=d M
mnf
od′ +Moth

od′
+X ′

oδ + γd + ϵod (A9)

Equation A8 tests whether the share of destination sub-District d’s non-mask textiles pur-

chased from origin sub-District o predicts the share of destination sub-District d’s masks

purchased from origin sub-District o. We include both origin sub-District and destination

sub-District fixed effects, analogous to our gravity specification in H. In robustness speci-

fications, we include as controls either log bilateral distance (described in H) and a bilat-

eral same-Province indicator, origin Province-by-destination Province fixed effects, or both.

Equation A9 tests whether origin sub-District o’s mask manufacturing intensity leaving out
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destination sub-District d predicts its destination sub-District d-specific mask manufacturing

intensity. We include destination sub-District fixed effects. In a robustness specification, we

include origin Province fixed effects.

We note that specifications of Equation A8 and A9 that include origin Province-by-

destination Province and origin Province fixed effects respectively, can be interpreted as

testing whether predictive power remains after residualizing regressors on Province fixed

effects. In Section 3.3.1, we showed our results are robust to residualizing jackknife mask

manufacturing intensity on Province fixed effects, suggesting that predictive power remains.

Results First, we present estimates of Equation A8 in Table A13. We find that higher frac-

tions of non-mask textiles in sub-District d sourced from origin sub-District o are associated

with higher fractions of masks in sub-District d sourced from origin sub-District o. This find-

ing is robust to the inclusion of additional controls, including origin Province-by-destination

Province fixed effects.

Table A13: Non-mask textile trade predicts mask trade

Dependent variable:

Mask purchasesod∑
o Mask purchasesod

(1) (2) (3) (4)

Non-mask textile purchasesod∑
o Non-mask textile purchasesod

0.107∗∗ 0.099∗∗ 0.103∗∗ 0.100∗∗

(0.046) (0.046) (0.046) (0.046)

log distanceod −0.010∗∗ −0.012∗∗∗

(0.004) (0.004)

Intra-provincial tradeod 0.002
(0.005)

Destination Sector FE X X X X
Origin Sector FE X X X X
Origin province × Destination province X X
# clusters (sub-Districts) 128 128 128 128
# of observations 5,588 5,588 5,588 5,588

Second, in Table A14 we present estimates of Equation A9. We find that higher origin

sub-District o mask manufacturing intensity leaving out destination sub-District d predicts
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origin sub-District o destination sub-District d-specific mask manufacturing intensity. This

finding is robust to the inclusion of origin Province fixed effects.

Table A14: leave-out mask manufacturing intensity predicts destination sub-District-specific
mask manufacturing intensity

Dependent variable:

Mmnf
od

Mmnf
od +Moth

od

(1) (2)∑
d‘ ̸=d Mmnf

od‘∑
d‘ ̸=d Mmnf

od‘ +Moth
od‘

0.857∗∗∗ 0.854∗∗∗

(0.049) (0.050)

Destination Sector FE X X
Origin Province FE X
# clusters (sub-Districts) 181 181
# of observations 677 677

J Cost-effectiveness

As described in Section 3.3, we estimate large decreases in COVID-19 infections caused by

domestic mask manufacturing in Rwanda. In this section, we compare these impacts to

available estimates of the fiscal costs of promoting domestic mask manufacturing in order;

this provides the cost-effectiveness of promotion of domestic mask manufacturing as a policy

to reduce COVID-19 infections.

First, to calculate the decrease in COVID-19 infections caused by domestic mask manu-

facturing in Rwanda, we multiply, in May through August, monthly national new COVID-19

infections (from the Rwanda Biomedical Center) by our estimates of the monthly impacts of

domestic mask manufacturing on COVID-19 infections from Section 3.3. As noted in Section

3.3.1, these estimates provide a lower bound on the impacts of domestic mask manufacturing

on COVID-19 infections. Using this approach, we calculate domestic mask manufacturing

averted 4,300 COVID-19 infections from May through August.

Second, the fiscal costs of promoting domestic mask manufacturing are the sum of the
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costs of two policies described in Section 2.2: the VAT exemption for domestically manu-

factured masks, and administrative licensing costs. We calculate an upper bound on a fiscal

costs of the VAT exemption as the value-added tax rate (18%) times the total turnover of

exempted masks to final consumers from May through August. While we do not have data

on licensing costs, we note that the small number of mask manufacturers suggests that the

associated licensing and audit costs are likely to be small relative to the costs of the VAT

exemption. Using this approach, we calculate a total cost of RwF 41 million (approximately

$40,000) of the promotion of domestic mask manufacturing.

Third, we take the ratio of these two estimates, and find the cost of averting a COVID-

19 infection through promotion of domestic mask manufacturing in Rwanda was 9,500

RwF/infection (approximately $9.4/infection). This is an order of magnitude smaller than

estimates from Kenya of treating a COVID-19 infection, which range from $278 to $5,879

(Barasa & Kairu, 2020).
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