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Abstract

When individuals self-select into multiple treatments, additional assump-
tions are needed to identify treatment effects with instrumental variables. Sup-
pose each treatment is targeted by a single instrument, and one of three equiv-
alent assumptions holds: no defiers, identical compliers, or additive random
utility. With continuous instruments, average marginal treatment effects for
individuals indifferent between control and K treatments (“MTE-K”) are iden-
tified. With price instruments in a 3x3 experimental design, absent income
effects, local average treatment effects for two treatments for common com-
pliers (“LATE-2”) are informatively partially identified: as experimental price
variation shrinks, LATE-2 bounds converge to MTE-2.
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When individuals self-select into treatments, under what conditions are treatment
effects identified? With a single treatment, a weighted average of treatment effects
is identified under an economically interpretable “monotonicity” assumption on an
instrumental variable (Imbens & Angrist, 1994; Heckman & Vytlacil, 2005): increases
in the instrument induce some individuals to shift from treatment to control, but
do not induce any to shift from control to treatment. In contrast, with multiple
treatments, the widely applied result with a single treatment that two-stage least
squares estimates a local average treatment effect no longer holds, even when there is
at least one instrument per treatment — additional assumptions are then necessary
to identify treatment effects (Behaghel et al., 2013; Kirkeboen et al., 2016).

In this paper, I establish that with two treatments, a local average treatment
effect for both treatments for a common set of compliers (“LATE-2”) is informatively
partially identified in a 3x3 experimental design that cross-randomizes zero, one, and
two unit increases in the price of each treatment. By placing strong restrictions on the
instruments (cross-randomized prices), albeit one under the control of the researcher, I
enable informative partial identification under a simple and economically interpretable
assumption: there are no income effects on treatment demand.

The intuition underlying partial identification of LATE-2 with cross-randomized
prices is as follows. An increase in the price of choice d ∈ {a, b} pushes individuals
into an outside option 0 who are almost indifferent between 0 and d. A simultaneous
increase in the price of both a and b, relative to increasing both prices separately,
additionally pushes individuals into 0 who are almost indifferent between 0, a, and b;
this difference-in-differences therefore enables identification of the average outcome
under 0 of these almost indifferent individuals. Further, assuming no income effects,
we can construct a synthetic increase in the price of 0 from an equal decrease in the
price of both a and b; just as for 0, we can then estimate the average outcome under
either a or b for individuals almost indifferent between 0, a, and b. Unfortunately, the
three groups of almost indifferent individuals (those for whom average outcomes under
0, under a, and under b can be estimated) are not identical, due to the discreteness
of the price changes. I therefore propose bounds on mean potential outcomes for the
intersection of these three groups, which in turn bound LATE-2.

In Section 1, I formalize assumptions on selection of individuals into multiple
treatments, and on outcomes. In subsequent sections, I apply these assumptions to
define and identify the marginal treatment effect (“MTE”) for individuals indifferent
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between a set of treatments with continuous variation in instruments, and to establish
partial identification of LATE-2 in the 3x3 experimental design.

As in Mountjoy (2022), I maintain throughout that responses to changes in the
value of the instruments satisfy unordered partial monotonicity (“UPM”), that each
instrument shifts agents towards the instrument’s associated choices and away from
other choices. I show this assumption is equivalent to the random utility model
(McFadden, 1981): individuals make utility maximizing choices when selecting into
treatment, and each instrument, as if a price, increases individual utilities associated
with its targeted choice.

I consider three additional assumptions that restrict the heterogeneity of treat-
ment responses to changes in the value of the instruments across individuals. Existing
work has developed approaches to identification of treatment effect parameters related
to LATE-2 and MTE, and falsification tests under each assumption.

• No defiers (“ND”) imposes a global notion of monotonicity: for any change
in the value of the instruments, no two individuals have opposing treatment
responses (Navjeevan & Pinto, 2022).

• Identical compliers (“IC”) imposes a marginal notion of monotonicity: the same
individuals are marginal between a pair of treatments, whether revealed by small
changes in either instrument targeting each treatment.1

• The Additive Random Utility Model (“ARUM”) imposes that agent utility is
additively separable in unobserved heterogeneity and the instrument (Lee &
Salanié, 2018).

In Section 2, I show that conditional on UPM, and additional technical assump-
tions, ND, IC, and ARUM are equivalent. This equivalence extends a result from
Vytlacil (2002), that ND and ARUM are equivalent when treatment is binary, to the
setting with multiple unordered treatments. The proof builds closely on Mogstad
et al. (2021), who show that with multiple instruments and a binary treatment, ND
is effectively equivalent to homogeneous instrument sensitivity. Under additional
technical assumptions, homogeneous instrument sensitivity is equivalent to ARUM. I

1IC implies the closely related assumption of comparable compliers from Mountjoy (2022), which
imposes the weaker restriction that individuals with the same mean potential outcomes are marginal.
I discuss the distinction between assumptions on selection into treatment, on which this paper fo-
cuses, and assumptions on outcomes, which may enable identification and need not imply assump-
tions on selection, in Section 1.2.
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apply their approach and extend it to IC – ND and IC are equivalent to homogeneous
instrument sensitivity, and therefore ARUM.

As a consequence, assuming UPM and either ND or IC is equivalent to assuming
that instruments are prices and choices satisfy ARUM.

In Section 3, I show that with continuous variation in prices under ARUM, the
average MTE across individuals who are indifferent between any set of treatments
is identified. When utility indices are known, identification of MTE for individuals
indifferent between all treatments is a corollary of Theorem 3.1 of Lee & Salanié
(2018). Absent income effects, utility indices are prices and are therefore observed;
with income effects, identification of utility indices with continuous variation in prices
has been established by Allen & Rehbeck (2019) and Bhattacharya (2023). While
these are known results, combining them to establish local identification of MTE
across individuals indifferent between all treatments with unknown utility indices
is novel. Complementarily, I extend known results to identification of the average
MTE across individuals who are indifferent between any set of treatments, bridging
identification results from Lee & Salanié (2018) (which apply to indifference between
all treatments) and Mountjoy (2022) (which apply to indifference between a pair of
treatments).

In many empirical applications, researchers do not have access to continuous vari-
ation in multiple instruments; in Section 4, I therefore derive bounds on LATE-2 with
discrete variation in prices when there are no income effects on treatment demand. I
do so in the 3x3 experimental design that cross-randomizes zero, one, and two unit
price increases for each of two treatments a and b relative to control 0. The derivation
proceeds in 4 steps:

• I characterize all 19 treatment response types and establish identification of
their probabilities. These include 8 “complier” groups who choose each of 0, a,
and b at one or more assigned prices.

• I show that mean potential outcomes for selected pairs of complier groups are
equal to the ratio of difference-in-difference estimands. This enables partial
identification of mean potential outcomes under 0, a, or b for selected complier
groups.

• I define LATE-2 as the average treatment effect across 2 (of the 8) complier
groups: these are the intersection of the complier groups for whom the mean
potential outcome under 0, under a, and under b is partially identified.
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• Absent additional assumptions, I show that LATE-2 bounds (Manski, 1990)
are, in general, uninformative in the limit as price increases approach 0. As
an alternative, I derive LATE-2 bounds under a generalization of monotone
treatment selection (Manski & Pepper, 2000), monotonicity of local average
treatment response (“MLATR”). I show that MLATR holds to first order with
respect to the size of price increases, and correspondingly that LATE-2 bounds
under MLATR converge to MTE in the limit as the price increases approach 0.

When instruments are prices and there are no income effects, this paper proposes
LATE-2 bounds under MLATR as the natural extension of LATE (Imbens & An-
grist, 1994) to the setting with two treatments, and the 3x3 experimental design as
the associated extension of an experimental subsidy. When individuals select into a
single treatment, as if maximizing utility, the “encouragement design” that random-
izes a subsidy for treatment enables identification of the average treatment effect for
compliers. This paper establishes that for any pair of treatments, an encouragement
design that cross-randomizes subsidies for both treatments enables informative par-
tial identification of both average treatment effects for a common set of compliers
(LATE-2) under the additional assumption of no income effects. Further, just as
LATE converges to MTE as the price increase approaches 0, LATE-2 bounds under
MLATR converge to MTE.

Examples Partial identification of LATE-2, and the associated proposed 3x3 ex-
perimental design, are particularly relevant when multidimensional selection bias is
plausible or of interest. Example applications include:

• Agents select from a menu of discrete choices, and choices are directly influenced
by the price and multidimensional impacts of each choice, as in the choice of
school (Mountjoy, 2022) or residence (Bergman et al., 2019; Pinto, 2022; Agness
& Getahun, 2024).

• Agents select from a menu of discrete choices with not-fully internalized con-
sequences which are plausibly correlated with willingness-to-pay, as is the case
with inattention (Allcott & Taubinsky, 2015, to costs for lightbulbs) or exter-
nalities (Berkouwer & Dean, 2022, from pollution for cookstoves).

• Agents make ordered choices and both the level and elasticity of demand may
correlate with the schedule of impacts, as for input misallocation across farms
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(Christian et al., 2023) or health insurance enrollment (Rose & Shem-Tov,
2023).

Literature review This paper contributes to a growing literature that analyzes
identification of marginal and local average treatment effects with multiple treat-
ments, extending the single treatment analysis of Heckman & Vytlacil (2005) and
Imbens & Angrist (1994) respectively.

This paper is most closely related to recent work analyzing identification of treat-
ment effects under UPM and ARUM. Under a generalization of ARUM, with known
utility indices, Lee & Salanié (2018) establish local identification of MTE; known
utility indices is equivalent to assuming no income effects as, absent income effects,
prices are utility indices. Under UPM and an assumption related to IC, with un-
known utility indices, Mountjoy (2022) establishes local identification of the average
MTE among individuals indifferent between a pair of treatments. In this paper, I
clarify links across these results by showing IC and ARUM are equivalent conditional
on UPM, and I extend them by establishing local identification, with unknown utility
indices, of average MTE among individuals indifferent across any set of treatments.

Alternative treatment effect parameters have been proposed that can be identi-
fied with discrete instruments. With one instrument that shifts individuals from 0
to either a or b, probabilities of all treatment response types are identified as are
many of their potential outcome distributions, with the crucial exception that the
distribution of outcomes under 0 for 0-to-a and 0-to-b compliers cannot be separated
(Kline & Walters, 2016; Feller et al., 2016; Rose & Shem-Tov, 2023). In more general
designs, when instruments act as if prices, economic theory can often impose restric-
tions on choices that enable identification of complier group probabilities (Kline &
Tartari, 2016) and treatment effects (Heckman & Pinto, 2018; Pinto, 2022; Buchinsky
et al., 2024) not otherwise identified: this paper extends this logic to enable partial
identification of LATE-2 absent income effects, and identification of MTE.

Alternative assumptions have been suggested that achieve identification of MTE or
LATE-2. These include large instrument support (Heckman et al., 2008), observing
counterfactual choices (Kirkeboen et al., 2016), additive separability of exogenous
characteristics in marginal treatment response when there is only one instrument for
a or b (Kline & Walters, 2016; Feller et al., 2016; Hull, 2018), or access to an instrument
for a or b and another for b holding fixed the choice of a or b, motivated by sequential
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rather than simultaneous treatment choice (Arteaga, 2023; Humphries et al., 2023;
Kamat et al., 2024). This paper is distinct in proposing an experimental design (the
3x3 factorial design cross-randomizing prices) in order to enable partial identification
of LATE-2 under the economically interpretable assumption of no income effects.

Structure of the paper Section 1 formalizes assumptions on selection into multi-
ple treatments, and Section 2 establishes an equivalence relation across assumptions
that restrict heterogeneity of treatment response. Section 3 establishes identification
of MTE for multiple treatments with continuous variation in prices. Section 4 estab-
lishes partial identification of LATE-2 for a pair of treatments in a 3x3 experimental
design. Section 5 concludes.

1 Modeling selection into multivalued treatment

This section describes a model of selection into multivalued treatment and associated
assumptions. Section 1.1 describes the selection framework with K treatments and
K instruments. Section 1.2 describes and interprets potential additional assumptions
related to monotonicity on the selection model that enable identification of treatment
effects. Section 1.3 interprets the relationship between these and other assumptions
on the selection model through their restrictions on admissible treatment response
graphs. Sections 1.4 and 1.5 develop additional technical assumptions on selection
and assumptions on outcomes, respectively.

1.1 Selection into multivalued treatment

Let I denote the population of individuals i ∈ I, with an associated probability
measure P and expectation E. Let Di(z) ∈ K ≡ {0, 1, . . . , K} denote the potential
treatment status of individual i if their instrument Zi ≡ (Zi1, . . . , ZiK) were set to
z ≡ (z1, . . . , zK), where Zi and z have support on a K-dimensional finite interval
Z ⊂ RK . Further let Did(z) ≡ 1 [Di(z) = d] indicate that individual i would have
treatment status d if their instrument were set to z.

Throughout the paper, I use (z′K0
, z−K0) to denote the vector where, for each

k ∈ K0, the kth element of z, zk, is set equal to z′k, noting that z ≡ (zK0 , z−K0);
when K0 is a singleton, that is K0 = {k}, I instead write (zk, z−k). Similarly, I use
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(z′k, z
′
`, z−{k,`}) to denote the vector where the kth and `th elements of z, zk and z`,

are set equal to z′k and z′`, respectively, and note that z ≡ (zk, z`, z−{k,`}).
In Section 4, and at times throughout this paper, I restrict to the case when

K = 2. I then follow Heckman & Pinto (2018) and let K ≡ {0, a, b} to emphasize
both that a and b are not necessarily ordered, and that K = 2.

Throughout this section, I interpret this setup as if K consists of a default option
0 and K mutually exclusive products {1, . . . , K}, one of which the household chooses
to consume. Through this lens, I interpret the kth dimension of the instrument, Zik,
as the price of product k assigned to individual i.

This model, and assumptions on selection made in this section, are closely related
to assumptions in Mountjoy (2022) and I at times use their context for concreteness.
In their empirical setting, K ≡ {0, 2, 4}, and the values of treatment statuses cor-
respond to not attending college, initially attending two-year college, and initially
attending four-year college, respectively. In their application, the realizations of the
instrument Zi2 and Zi4 correspond to distance from i to the nearest two-year college
and to the nearest four-year college, respectively.

1.2 Monotonicity

With a binary treatment and scalar instrument, the assumption that treatment status
is increasing in the value of the instrument (“monotonicity”, in Imbens & Angrist,
1994) implies no defiers; in contrast, with multiple unordered treatments, common
restrictions on the sign and heterogeneity of treatment responses are no longer nested.
Section 1.2.1 describes an assumption that restricts the sign of treatment responses
to changes in the value of each instrument, unordered partial monotonicity, and links
it to a random utility model. Section 1.2.2 describes assumptions that restrict het-
erogeneity in responses across individuals: identical compliers, no defiers, and an
additive random utility model.

1.2.1 Unordered partial monotonicity and the random utility model

In many applications, the instrument z acts similarly to (or is) the vector of prices of
the treatments. When the price of a given treatment increases, the canonical random
utility model restricts the potential treatment responses: marginal individuals shift
out of the now more expensive treatment into other treatments, but no individuals are
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induced to shift between treatments that did not experience price changes. Mountjoy
(2022) formalizes this assumption with two treatments; I restate it for K treatments
with the notation in Section 1.1.

Assumption UPM (Unordered Partial Monotonicity). For all i ∈ I, k ∈ K \ {0},
and (zk, z−k), (z

′
k, z−k) ∈ Z with z′k < zk,

Dik(z
′
k, z−k) ≥ Dik(zk, z−k)

and for all ` ∈ K \ {k},
Di`(z

′
k, z−k) ≤ Di`(zk, z−k)

In the context of college attendance choices in Mountjoy (2022), Assumption UPM
imposes the following restrictions on treatment status:

• Decreasing the distance to the nearest two-year college causes individuals to
shift from not attending college to two-year college, and to shift from attending
four-year college to attending two-year college. It does not cause any individuals
to stop attending two-year college, or to shift between not attending college and
four-year college.

• Similarly, decreasing the distance to the nearest four-year college causes indi-
viduals to shift from not attending college to four-year college, and to shift from
attending two-year college to attending four-year college. It does not cause any
individuals to stop attending four-year college, or to shift between not attending
college and two-year college.

These restrictions are motivated by individuals making their utility-maximizing choice
of college attendance, with the utility from attending a college decreasing in the
distance to the college.

Through the lens of the random utility model, Assumption UPM imposes restric-
tions on how instruments (e.g., distances to the nearest two-year college and four-year
college) can affect individuals’ utilities – the decrease of zk to z′k weakly increases the
utility of k relative to all other choices, but does not affect the relative utility of other
choices.

Assumption TRUM (Targeted Random Utility Model). For all i ∈ I, treatment
status Di(z) satisfies

Di(z) = argmax
d∈K

Vid(z) (1)
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for all z ∈ Z. Further, Vi0(z) = 0, and Vik(z) = Uik − µik(zk), where µik is an
increasing function of zk, for all k ∈ K \ {0}.

Proposition 1. Assumptions UPM and TRUM are equivalent.

Proof. I establish equivalence in two steps. First, I show that Assumption TRUM
implies Assumption UPM. Second, I show that Assumption UPM implies Assumption
TRUM; this second step is more involved, and I sketch the argument below with
details in Appendix A.1.

Assumption TRUM ⇒ Assumption UPM Take any (zk, z−k), (z
′
k, z−k) ∈ Z

with z′k < zk. By Assumption TRUM, for all i ∈ I, Vik(z
′
k, z−k) ≥ Vik(zk, z−k),

and for all ` ∈ K \ {k}, Vi`(z
′
k, z−k) = Vi`(zk, z−k). Applying Equation 1, for all

i ∈ I, Dik(z
′
k, z−k) ≥ Dik(zk, z−k), and Di`(z

′
k, z−k) ≤ Di`(zk, z−k) for all ` ∈ K \ {k}.

Assumption UPM therefore holds.

Assumption TRUM ⇐ Assumption UPM I proceed constructively, apply-
ing Assumption UPM to construct utility indices which I show satisfy Assumption
TRUM. I do so in 3 steps:

First, I construct an individual’s “willingness-to-pay” for each treatment k as the
maximum value of zk at which the individual would choose treatment k. By construc-
tion, when the instrument is elementwise greater than an individual’s willingness-to-
pay vector, the individual will choose 0. Applying Assumption UPM implies that this
is if-and-only-if: willingness-to-pay therefore fully characterizes an individual’s choice
of 0 over all other treatments as a function of “prices”.

Second, I construct an individual’s “equivalent variation” for each treatment k,
in units of the “price” of treatment 1, z1, for the option to choose treatment k over
treatment 1 (as if there was no option to choose treatment 0). I define this “equivalent
variation” as the difference between the maximum “price” z1 at which the individual
chooses treatment 1, as a function of zk, and the actual price of treatment 1, z1.
Applying Assumption UPM, I show that an individual chooses treatment 1 if and only
if their willingness-to-pay for treatment 1 is positive, and their equivalent variation
from all other treatments is negative.

Third, once again applying Assumption UPM, I show that an individual chooses
treatment k if and only if their willingness-to-pay for treatment k is positive, their
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equivalent variation from treatment k is positive, and their equivalent variation from
treatment k is higher than their equivalent variation from all other treatments j.

These three results immediately suggest a construction of utility indices satisfy-
ing Assumption TRUM. The utility index for treatment 0 is 0. The utility index
for treatment 1 is the difference between willingness-to-pay for treatment 1 and the
price of treatment 1, that is the compensating variation for choosing treatment 1 over
treatment 0. The utility index for treatment k is the equivalent variation from treat-
ment k minus the compensating variation from treatment 1, that is the difference
between the individual’s maximum “price” at which they would choose treatment
1 over treatment k (as a function of the price of treatment k) and the individual’s
willigness-to-pay for treatment 1.

Assumption TRUM is equivalent to assuming agents make choices as if they max-
imize utility and instruments are prices, as in the random utility model (McFadden,
1981). The equivalence between Assumption TRUM and UPM therefore provides a
concrete interpretation of Assumption UPM.

1.2.2 Identical compliers, no defiers, and additive random utility

Conditional on Assumption UPM, which restricts the sign of treatment responses to
changes in the value of the instrument, I consider three assumptions that restrict the
heterogeneity of treatment responses.

Assumption IC (Identical Compliers). For all z ∈ Z, all k, ` ∈ K\{0} where k 6= `,
and for all bounded continuous y(v) : B+(Z,RK) → R, where B+(Z,RK) is the set
of increasing functions from Z to RK,

lim
z′k↑zk

E[y(Vi)|Di(z
′
k, z−k) = k,Di(zk, z−k) = `] = lim

z′`↓z`
E[y(Vi)|Di(z

′
`, z−`) = k,Di(z`, z−`) = `]

One interpretation of Assumption IC is that it imposes “marginal monotonicity”:
interpreting y(Vi) as a projection of an individual’s “type” Vi : Z → RK , it imposes
that the same average (projected) type y(Vi) of individuals are marginal between
treatment statuses k and `, whether revealed by small changes in zk or z`.

Assumption IC is closely related to comparable compliers from Mountjoy (2022);
comparable compliers imposes the weaker assumption that Assumption IC holds only
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for y(v) = E[Yik|Vi = v], rather than for all bounded continuous y(v).2 Comparable
compliers is a strictly weaker assumption, as, for example, it is satisfied whenever
selection is independent of potential outcomes. I focus on identical compliers to sep-
arate assumptions on selection from assumptions on potential outcomes conditional
on Vi (or, equivalently, Di(·)).

Assumption ND (No Defiers). For all z, z′ ∈ Z, k, ` ∈ K with k 6= `

P [Di(z) = k,Di(z
′) = `] = 0 or P [Di(z) = `,Di(z

′) = k] = 0

Assumption ND imposes “global monotonicity”: for any change in the value of
the instruments, no two individuals have opposing treatment responses. Navjeevan &
Pinto (2022) discuss identification under Assumption ND with discrete instruments.

Assumption ARUM (Additive Random Utility Model). For all i ∈ I and z ∈ Z,
treatment status satisfies Equation 1 where Vi0(z) = 0, and Vik(z) = Uik − µk(zk) for
all k ∈ K \ {0}.

Assumption ARUM imposes strong restrictions on heterogeneity of treatment re-
sponses: for any change in the value of the instruments, all individuals agree on the
changes in relative utility across treatments. Lee & Salanié (2018) discuss identifica-
tion of treatment effects under Assumption ARUM.

Assumptions IC, ND, and ARUM are redundant conditional on Assumption UPM
for a binary treatment and instrument. In this case, Assumption UPM corresponds
to the monotonicity assumption in Imbens & Angrist (1994), and increases in the
binary instrument must shift agents away from control and into treatment. Without
multivalued treatment, Assumption IC holds vacuously, Assumption ND is implied
by monotonicity, and Vytlacil (2002) showed that Assumption ARUM is implied by
monotonicity. However, with multiple treatments and multiple instruments, each of
these assumptions puts additional restrictions on choices conditional on Assumption
UPM.

2Substituting y(v) = E[Yik|Vi = v] into Assumption IC, and applying the
law of iterated expectations, yields limz′

k↑zk E [Yik|Di(z
′
k, z`) = k,Di(zk, z`) = `] =

limz′
`↓z` E [Yik|Di(zk, z

′
`) = k,Di(zk, z`) = `], which is the comparable compliers assumption.
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1.3 Relationships across assumptions on selection

Assumption ND can be equivalently stated in terms of the permissible directed graphs
of flows between treatments in response to a change in the value of the instrument.
Define the “treatment response graph” G(z,z′) for a change in the value of the instru-
ment from z to z′, with element (k, `) ∈ K2 equal to G

(z,z′)
(k,`) , by

G
(z,z′)
(k,`) ≡ 1{k 6= ` ∧P[Di(z) = k,Di(z

′) = `] > 0} (2)

The element (k, `) of the treatment response graph G(z,z′) is 1 if the change of the
instrument z → z′ induces individuals to shift k → `, and 0 otherwise.3

Assumption ND can be equivalently stated using the treatment response graph
as follows: for any k, ` ∈ K, either G

(z,z′)
(k,`) = 0 or G

(z,z′)
(`,k) = 0. That is, there is no

change in the value of the instrument from z to z′ that both induces individuals to
shift d → d′ and also d′ → d.

Figure 1 plots the 6 unique treatment response graphs (up to permutations of
nodes) that are consistent with no defiers when K = 2. Conditional on Assumption
ND, additional assumptions place additional restrictions on the set of permissible
treatment response graphs. I discuss the restrictions placed by 3 additional assump-
tions: no cycles, unordered monotonicity (Heckman & Pinto, 2018), and Assumption
UPM.

First, “no cycles” (“NC”) imposes that there are no cycles in the treatment re-
sponse graph G(z,z′). This is a stronger assumption than Assumption ND – it rules
out the case, for example, where a change in the value of the instruments induces the
treatment flows {0 → a, a → b, b → 0}. Interpreting flows of individuals across treat-
ments as a revealed preference, a cycle implies a form of preference heterogeneity:
the change in the value of the instruments must have strictly increased the relative
value of a to 0 for individuals shifting 0 → a, of b to a for agents shifting a → b,
and of 0 to b for agents shifting b → 0. These changes in relative values are not si-
multaneously possible for a single agent. Cycles challenge identification of treatment

3The admissible treatment response graphs discussed here are closely related to admissible binary
response matrices under unordered monotonicity in Heckman & Pinto (2018) and under minimal
monotonicity (equivalent to no defiers) in Navjeevan & Pinto (2022); binary response matrices carry
additional information on restrictions to responses across multiple values of an instrument, which
Heckman & Pinto (2018) and Navjeevan & Pinto (2022) use to establish results on identification
with discrete variation in instruments.
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Figure 1: Feasible treatment response graphs conditional on no defiers

Notes: The set of unique feasible treatment response graphs G(z,z′) for K = 2, defined in Equation 2,
up to permutations of nodes possible under Assumption ND are presented in this figure. The subset
of these graphs that are feasible when either no cycles, unordered monotonicity, or Assumption
UPM is also imposed are included in the associated labeled circle of the assumption.

effects in a manner similar to defiance: a cycle implies that unobserved flows of indi-
viduals across treatments are possible without any corresponding change in observed
treatment probabilities.

Second, “unordered monotonicity” (“UM”), analyzed by Heckman & Pinto (2018),
imposes that there is no treatment that experiences both individuals shifting into
that treatment and individuals shifting out of that treatment in response to a change
in the value of the instruments.4 That is, for all k ∈ K, either

∑
`∈K G

(z,z′)
(k,`) = 0

4Other work has analyzed assumptions that imply unordered monotonicity (Behaghel et al.,
2013; Bhuller & Sigstad, 2023), and are therefore distinct from unordered partial monotonicity.
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or
∑

`∈K G
(z,z′)
(`,k) = 0. UM strengthens no cycles, by effectively imposing that there

are two tiers of treatments for any change in the instruments: those that receive
flows of individuals from other treatments, and those that send flows of individuals
to other treatments. It therefore rules out two sets of treatment response graphs
consistent with no cycles which imply three tiers of treatments: {0 → a, a → b}, and
{0 → a, a → b, 0 → b}.

Third, Assumption UPM, analyzed by Mountjoy (2022), imposes that each instru-
ment induces positive flows into its associated treatment and out of other treatments,
but not between other treatments.5 Assumption UPM implies, but is not implied
by, additional restrictions on the set of permissible treatment response graphs. Con-
sider as an example reducing both za and zb. Reducing za must induce agents to
shift 0 → a and b → a, while reducing zb must induce agents to shift a → b and
0 → b; reducing za and then zb must shift agents from 0 → b, while reducing zb and
then za must shift agents from 0 → a. When combined with no defiers, only three
sets of flows are therefore possible from reducing both za and zb: {0 → a, 0 → b},
{0 → a, 0 → b, a → b}, and {0 → a, 0 → b, b → a}. Applying the above reasoning to
each possible change in the value of the instrument, Assumption ND and Assumption
UPM jointly strengthen no cycles by implying transitivity of treatment flows: if a
change in the value of the instruments shifts individuals a → b (i.e., strict revealed
preference for b over a), and not from a → 0 (i.e., weak revealed preference for a over
0), then it must also shift individuals from 0 → b (i.e., strict revealed preference for
b over 0).

That Assumptions UPM and ND jointly imply transitivity of treatment flows sug-
gests an equivalence with Assumption ARUM: both transitivity and the “increasing
differences” property of the additive random utility model (Lee & Salanié, 2023) are
equivalent to the statement that any change in the value of the instrument z → z′

induces a weak ordering of treatments through the associated treatment response
graph G(z,z′).

5While Assumption UPM only imposes that each instrument induces weakly positive flows into
its associated treatment and out of other treatments, the version of Assumption UPM analyzed by
Mountjoy (2022), or Assumption UPM coupled with Assumptions TRUM.1, TRUM.2, and TRUM.3,
imposes strictly positive flows. In the analysis in this section, I implicitly assume strictly positive
flows.
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1.4 Technical assumptions on selection

I consider the following additional technical assumptions on the targeted random
utility model in Assumption TRUM.

Assumption TRUM.1. Let µi(z) ≡ (µik(zk))
K
k=1, such that µi : Z → RK. µi has

associated probability measure F , and µi(z) is continuously differentiable with respect
to z for all i ∈ I with bounded derivative.

Assumption TRUM.2. Ui ≡ (Uik)
K
k=1 has strictly positive, bounded, and continuous

density on RK conditional on µi, f(·|µi).

Assumption TRUM.3. µ′
ik(zk) > 0 for all i ∈ I, z ∈ Z, k ∈ K \ {0}.

I impose three additional technical restrictions on the targeted random utility
model. Assumption TRUM.1 imposes that utility is continuously differentiable in the
instrument. Assumption TRUM.2 ensures that for each “sensitivity” to the instru-
ment µi and each value of the instrument z, there are positive densities of individuals
Ui who are indifferent between any tuple of treatment statuses. Assumption TRUM.3
ensures that all individuals are responsive to both instruments.

1.5 Independence and assumptions on outcomes

Let Yid be the outcome of individual i under treatment status d, such that the observed
outcome Yi(Zi) ≡

∑
d∈K Did(Zi)Yid. The econometrician observes (Yi(Zi), Di(Zi), Zi)

for each individual i ∈ I.
I make the following independence assumption.

Assumption I (Independence and Exclusion). Zi ⊥ ((Yid)
K
d=0, Vi)

Assumption I implies that the assigned value of the instrument Zi is independent
of potential outcomes and selection into treatment.

I apply throughout this paper two results that follow from Assumption I. First,
E[Did(Zi)|Zi = z] = E[Did(z)|Zi = z] = E[Did(z)] for all d ∈ K; I denote Pd(z) ≡
E[Did(z)]. Second, E[Yi(Zi)Did(Zi)|Zi = z] = E[YidDid(z)|Zi = z] = E[YidDid(z)]

for all d ∈ K; I denote PYd(z) ≡ E[YidDid(z)]. By the above, Pd(z) and PYd(z) are
identified for all z ∈ Z.
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Technical assumptions on outcomes The analysis of identification in Sections
3 and 4 will require additional restrictions on the joint distribution of potential out-
comes and latent utilities. I will maintain Assumption ARUM in Sections 3 and 4; I
therefore omit the conditioning on the utility index in the density of Ui, f(u).

I restrict expected potential outcomes conditional on Ui = u as follows.

Assumption Y.1. For all d ∈ K, E[Yid|Ui = u] is continuously differentiable with
respect to u.

Assumption Y.2. Bounds Yid ∈ [Y , Y ] are satisfied for all d ∈ K, i ∈ I.

Lee & Salanié (2018) apply a weaker version of Assumption Y.1, assuming equicon-
tinuity of E[Yid|Ui = u] and f(u), that avoids pathological cases by ensuring that
E[Yid|Ui = u]f(u) and f(u) converge to limiting approximations at similar rates.

I apply the assumption that potential outcomes are bounded in Assumption Y.2
to derive bounds on LATE-2 in Section 4.

2 Equivalence across assumptions on selection

In this section, I show that Assumptions IC, ND, and ARUM are equivalent condi-
tional on Assumption TRUM (or, equivalently, Assumption UPM) and Assumptions
TRUM.1, TRUM.2, and TRUM.3.

The conditional equivalence of Assumptions IC, ND, and ARUM immediately
implies that any results derived under one of these assumptions immediately holds
under the others. For instance, testable restrictions of Assumption IC (Mountjoy,
2022), Assumption ND (Heckman & Vytlacil, 2005; Kitagawa, 2015; Rose & Shem-
Tov, 2023), and Assumption ARUM (Allen & Rehbeck, 2019; Bhattacharya, 2023)
are therefore testable restrictions of all three assumptions. This intuition applies to
identification results for the marginal treatment effect (Section 3) and a local average
treatment effect for two treatments (Section 4): while I establish identification under
Assumptions TRUM and ARUM, by equivalence results hold under Assumption IC
or Assumption ND instead of Assumption ARUM.

Proposition 2. Suppose Assumptions TRUM, TRUM.1, TRUM.2, and TRUM.3
hold. Then Assumptions IC, ND, and ARUM are equivalent.
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Proof. To begin, I note that Assumption ARUM implies Assumption IC (as shown
by Mountjoy, 2022) and Assumption ND (as shown by Lee & Salanié, 2023). Below, I
show that either Assumption IC or Assumption ND implies homogeneous instrument
sensitivity, which I show implies Assumption ARUM. Therefore, Assumptions IC,
ND, and ARUM are equivalent.

Figure 2: Identical compliers or no defiers implies homogeneous instrument sensitivity

Notes: Two example indifference sets, corresponding to the set of values z for which individuals i
and j are indifferent between treatments a and b, are plotted in this graph, which is centered at their
point of intersection. Values of the treatment status of i and j as a function of z, (Di, Dj), which
contradict Assumption ND are plotted. Indifference sets through alternative values of z – with an
increase in za and with a decrease in zb – are plotted for both individuals of type-µi and type-µj ,
which contradict Assumption IC.

The intuition underlying the result that either Assumption IC or Assumption
ND is equivalent to homogeneous instrument sensitivity, and therefore Assumption
ARUM, is presented in Figure 2 for K = 2. Figure 2 builds closely on Mogstad et al.
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(2021), applying their Figure 2 (and associated logic) to the setting with multivalued
treatment and extending it from Assumption ND to Assumption IC.

First, Figure 2 presents an example with two defiers i and j for a given change
in the instrument. Under Assumption TRUM, the implied sets of (za, zb) for which
defiers i and j are indifferent between treatment statuses must intersect, that is i and
j have heterogeneous instrument sensitivity. One can similarly identify defiers from
i-type and j-type individuals who differ in their instrument sensitivity.

Second, Figure 2 shows the effects of a small increase in za and a small decrease in
zb on individuals with instrument sensitivity characterized by (µia, µib) and (µja, µjb);
more of the µj-type individuals shift treatment status in response to the increase in
za, while more of the µi-type individuals shift treatment status in response to the
decrease in zb.

Homogeneous instrument sensitivity ⇒ Assumption ARUM I define homo-
geneous instrument sensitivity as

µ′
ik(zk)

µ′
jk(zk)

=
µ′
i`(z`)

µ′
j`(z`)

∀i, j ∈ I, k, ` ∈ K \ {0}, z ∈ Z

These ratios are well defined under Assumption TRUM.3. As Z is a K-dimensional
interval, if (z′k, z′`, z−{k,`}) ∈ Z then (zk, z

′
`, z−{k,`}), (z

′
k, z`, z−{k,`}) ∈ Z, and the above

equality implies

µ′
ik(zk)

µ′
jk(zk)

=
µ′
ik(z

′
k)

µ′
jk(z

′
k)

=
µ′
i`(z`)

µ′
j`(z`)

=
µ′
i`(z

′
`)

µ′
j`(z

′
`)

∀i, j ∈ I, (zk, z`, z−{k,`}), (z
′
k, z

′
`, z−{k,`}) ∈ Z

Fix any j ∈ I. By continuous differentiability of µik(zk) by Assumption TRUM.1,
rescaling Vik(z) implied by Assumption UPM in Proposition 1 by the i-specific con-
stant µ′

jk(zk)

µ′
ik(zk)

yields the additive random utility model in Assumption ARUM with
µk(zk) ≡ µjk(zk).

Assumption ND ⇒ Homogeneous instrument sensitivity By Assumptions
TRUM.1, TRUM.2, and TRUM.3, for each type µi there are a positive density of
marginal individuals at any value of the instrument z. Assumption TRUM.1 holds,
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and Proposition 2 of Mogstad et al. (2021) therefore implies that

µ′
ik(zk)µ

′
j`(z`) = µ′

jk(zk)µ
′
i`(z`)

For all i, j ∈ I, k, ` ∈ K \ {0}, z ∈ Z. By Assumption TRUM.2, this is equivalent to
homogeneous instrument sensitivity.

Assumption IC ⇒ Homogeneous instrument sensitivity The proof that As-
sumption IC implies homogeneous instrument sensitivity closely follows the logic in
Figure 2, but the associated notation is cumbersome and the proof is left to Appendix
A.2.

3 Identification of the marginal treatment effect

In this section, I establish identification of the marginal treatment response (“MTR”,
Mogstad et al., 2018), and weighted averages of MTR. The MTR to d is the mean
potential outcome under d among individuals with latent utility u.

MTRd(u) ≡ E[Yid|Ui = u]

In particular, for any set of multiple treatments K0 ⊆ K, and any d ∈ K0, I es-
tablish identification of average MTRd(Ui) across individuals indifferent among treat-
ments in K0; under the additive random utility model in Assumption ARUM, such
indifference is well defined. The difference between average marginal treatment re-
sponses under d and under another ` ∈ K0 returns a weighted average of marginal
treatment effects – it is the average treatment effect of d relative to ` among individ-
uals indifferent among K0.

This result is a modest extension of existing identification results. Under As-
sumption UPM and a weaker version of Assumption IC, Mountjoy (2022) established
identification when |K0| = 2.6 Under Assumption TRUM and ARUM, and when
the utility index µ(z) is known, Theorem 3.1 of Lee & Salanié (2018) established
identification when K0 = K; however, Lee & Salanié (2018) note that there is not
generic guidance for local identification of utility indices. Under Assumption TRUM

6Although their analysis focuses on the case where the number of treatments K = 2, their
analysis trivially extends to general case where K > 2.
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and ARUM, Allen & Rehbeck (2019) and Bhattacharya (2023) establish identifica-
tion of µ(z). I contribute by combining these results to establish identification when
K0 = K and µ(z) is unknown, and in addition by establishing identification in cases
where 2 < |K0| < K + 1; for instance, average treatment effects among individuals
indifferent between any triple of treatments are identified.

Proposition MTR (Identification of the marginal treatment response). Suppose
Assumptions TRUM, TRUM.1, TRUM.2, TRUM.3, ARUM, I, and Y.1 hold. Take
any K0 ⊆ K where |K0| ≥ 2. Let U(K0) ≡ {u : u`−µ`(z`) ≥ ud−µd(zd) ∀ ` ∈ K0, d ∈
K} be the set of values of latent utilities Ui corresponding to indifference among
treatments in K0. Then, the average marginal treatment response E[Yid|Ui ∈ U(K0)]

is identified for all d ∈ K0.

Proof. Derivations and general expressions are left to Appendix A.3. I focus here
on the case where k 6= 0 and K0 = K, that is identification of the average outcome
under treatment k for individuals indifferent between control and all treatments,
MTRk(µ(z)).

µ′
k(zk)

µ′
`(z`)

=
∂

∂zk
P`(z)

∂
∂z`

Pk(z)
(3)

f(µ(z)) = − ∂∑
`∈K\{0} µ

′
`(z`)∂z`

∂K−1∏
`∈K\{0,k} µ

′
`(z`)∂z`

Pk(z) (4)

MTRk(µ(z)) =

∂∑
`∈K\{0} µ′

`(z`)∂z`

∂K−1∏
`∈K\{0,k} ∂z`

PYk(z)

∂∑
`∈K\{0} µ

′
`(z`)∂z`

∂K−1∏
`∈K\{0,k} ∂z`

Pk(z)
(5)

Equation 3 is derived by Allen & Rehbeck (2019) and Bhattacharya (2023), and
establishes identification of µ(z) up to location (µ(z0) = 0 for fixed z0 ∈ Z) and scale
(µ′

1(z
0
1) = 1) normalizations.

Equation 4 is a special case of the identification of the density of marginal indi-
viduals derived by Lee & Salanié (2018) under known utility index; combined with
Equation 3, it establishes identification of the density with an unknown utility index
by K-differences. Intuitively, marginal individuals can be isolated as those who shift
into treatment k in response to increasing the utility index of any other treatment `

(pushing individuals from ` to k), or in response to decreasing the utility index of all
treatments (pushing individuals from 0 to k). Importantly, Equation 4 applies for the
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choice of any treatment k – we can isolate marginal individuals as those pushed into
any given treatment through an increase in the utility index of any other treatment
or a decrease in the utility indices of all treatments.

Once marginal individuals pushed into a given treatment k can be isolated, their
mean potential outcomes under that treatment k can be identified as the “mass”
of outcome under k pushed into treatment k normalized by the density of marginal
individuals; Equation 5 expresses this result.

I present in Figure 3 the graphical intuition underlying the local identification
result for the marginal treatment response in Equation 5 of Proposition MTR, for the
case when K = 2. Figure 3 follows the approach to visualizing local identification in
Mountjoy (2022). In each panel, I plot the values of the utility index µ(z) under small
changes in the utility indices associated with the cross-partial derivatives in Equation
5. In turn, each value of the utility index is associated with treatment choices Di(z),
characterized by three sets of inequalities:

Di(z) = 0 ⇔ Uia < µa(za), Uib < µb(zb)

Di(z) = a ⇔ Uia > µa(za), Uib − Uia < µb(zb)− µa(za)

Di(z) = b ⇔ Uib > µb(zb), Uib − Uia > µb(zb)− µa(za)

I color changes in the values of latent utilities Ui that shift into Di(z) = 0, a, and b

in Figures 3b, 3a, and 3c, respectively, with each shaded region then corresponding
to a set of compliers for whom densities and mean potential outcomes are identified.

I briefly discuss Figure 3a, corresponding to identification of the mean potential
outcome under treatment a (MTRa(µ(z))), to capture the underlying intuition. The
ratio of local difference-in-differences which estimates MTRa(µ(z)) is constructed as
follows. First, increasing zb pushes individuals indifferent between treatments a and
b into treatment a. Second, decreasing equally both µa(za) and µb(zb) pushes individ-
uals indifferent between treatments a and 0 into treatment a. Therefore, doing both
of these additionally pushes individuals indifferent between a, b, and 0 into treatment
a.

In many empirical applications, variation in instruments is discrete, rather than
continuous. I therefore apply the intuition in Figure 3 to the case with discrete instru-
ments in Section 4: with discrete instruments at the increments suggested by Figure
3, mean potential outcomes for selected groups of compliers is identified. However,
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Figure 3: Local difference-in-differences identifies treatment effects for individuals
indifferent across all treatment statuses

(a) Identification of E [Yia|Ui = µ(z)]

(b) Identification of E [Yi0|Ui = µ(z)] (c) Identification of E [Yib|Ui = µ(z)]

Notes: The set of individuals Ui with treatment status 0, a, and b under small changes in the value
of the instruments z are plotted in each panel of this Figure. Shaded regions in panels (a), (b), and
(c) correspond to changes in the set of individuals with treatment status a, 0, and b, respectively,
under each of two possible changes in the values of the instruments or both.
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these increments depend on the index µ, and ex-ante knowledge of this index is not,
in general, plausible. I focus on price instruments in Section 4, in which case the
absence of income effects implies µ(z) = z.

4 Identification of a local average treatment effect
for two treatments

In this section, I establish partial identification of a local average treatment effect for
two treatments (“LATE-2”) for a common set of compliers in a 3x3 factorial design
cross randomizing zero, one, and two unit price increases for each treatment, when
there are no income effects on treatment demand. In Section 4.1, I formalize the
3x3 design, and characterize all treatment response types Di(·), including all eight
complier groups. In Section 4.2, I derive bounds on LATE-2 for the union of two
particular complier groups. I discuss the bounds and assumptions in Section 4.3.

4.1 Cross-randomized prices in the 3x3 experimental design

In addition to Assumptions TRUM and ARUM, I maintain the additional restriction
on selection that the utility index µ is known. As µ is known, µk(zk) can be used
in place of zk; I therefore assume without loss of generality that µk(zk) = zk. When
instruments are prices, this is equivalent to assuming there are no income effects, and
I therefore interpret this assumption as such throughout this section.

Assumption NIE (No income effects). The utility index in Assumption ARUM, µ,
is known; without loss of generality, µ(z) = z.

I restrict to the case where there are two treatments (K = 2), and the 3x3 factorial
design cross randomizing zero, one, and two unit price increases for each treatment.
After location and scale normalizations, this experimental design is equivalent to
Z ≡ {0, 1, 2}2.

Assumption 3x3 (3x3 experimental design). The number of treatments K = 2, and
Z ≡ {0, 1, 2}2.

The choice of the 3x3 experimental design is motivated by Figure 3. Each panel
of Figure 3 suggests that 4 points of support for Z are sufficient to identify the
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mean potential outcome among almost indifferent individuals. These 4 points of
support correspond to a square (Figure 3b), vertically oriented parallelogram (Figure
3a), and horizontally oriented parallelogram (Figure 3c), for treatments 0, a, and b,
respectively; the 3x3 unit grid in Z contains at least two of each of these sets of
4 points of support, which I show in Section 4.2 enables bounding a local average
treatment effect for both treatments.

I will derive some results in the limit as the price changes in the 3x3 experimen-
tal design approach 0; for these results, I impose the following modified version of
Assumption 3x3.

Assumption 3x3(ε). Let ε > 0. The number of treatments K = 2, and Z(ε) ≡
{0, ε, 2ε}2.

4.1.1 Treatment response types with no income effects

Assumptions NIE and 3x3 place substantial restrictions on the set of treatment re-
sponse types Di(·). Under Assumption NIE, a one unit increase in both za and zb

does not cause any individuals to switch from a to b or from b to a; note that ab-
sent Assumption NIE, one, but not both, of these switches may occur, while absent
Assumption ARUM both of these switches may simultaneously occur. Many across-
instrument comparisons in the 3x3 design involve one unit increases in both za and
zb, as the values of the instrument lie on the unit grid.

I characterize the full set of 19 treatment response types under Assumptions NIE
and 3x3 in Figures 4a and 4b, following the approach to visualizing treatment response
types in Lee & Salanié (2023). In Figure 4a, I plot the 9 instrument values in the 3x3
experimental design in the space of latent utilities Ui. I then plot the partitions of
the space of Ui generated by the inequalities characterizing treatment choices Di(z)

as a function of Ui for each z ∈ Z in Figure 4b; each resulting partition corresponds
to a distinct treatment response type.

The 19 treatment response types are characterized as follows. First, individuals
with sufficiently low latent utilities, sufficiently high latent utility for a, and suffi-
ciently high latent utility for b are Always 0, Always a, and Always b, respectively.
Individuals with sufficiently low latent utility for b, but intermediate latent utility for
a, are Never b; Never b fall into two groups, those with latent utility for b between
0 and 1, and between 1 and 2. While Never a are characterized similarly, there are
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Figure 4: Complier groups and their probabilities in the 3x3 design

(a) 3x3 design (Z ≡ {0, 1, 2}2) (b) Complier groups (Cxyk)

(c) Identification of P [Ui ∈ C00a] (d) Identification of P [Ui ∈ C00b]

Notes: The set of individuals Ui is plotted in each panel of this figure. Figure 4a plots the assigned
values of the instrument in the 3x3 design in the space of individual latent utilities. Figure 4b plots
the 19 treatment response types generated by the 3x3 design, including the 8 groups of compliers.
Figures 4c and 4d demonstrate how the probabilities of each complier group are identified from
observed treatment choice probabilities.
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four groups of Never 0: those whose latent utility for a is between -2 and -1, -1 and
0, 0 and 1, and 1 and 2 less than their latent utility for b, corresponding to intervals
between all possible values of za − zb.

Lastly, and most importantly, there are 8 complier groups, who take up all three
treatments at some value of the instruments. I index these complier groups by
(x, y, k) ∈ {0, 1}2 × {a, b}; each complier group Cxyk is uniquely characterized by

Ui ∈ Cxyk ⇔

Di(x, y) = k

Di(x+ 1, y) = b

Di(x, y + 1) = a

Di(x+ 1, y + 1) = 0

Equivalently, Cxya ≡ {u : ua ∈ [x, x + 1], ub ∈ [y, y + 1], ua − x ≥ ub − y} and
Cxyb ≡ {u : ua ∈ [x, x+1], ub ∈ [y, y+1], ua−x ≤ ub−y}. Under Assumption 3x3(ε),
I instead denote these complier groups Cxyk(ε).

These 8 complier groups are the only treatment response types that take up each
treatment under observed values of the instruments, and therefore are the only treat-
ment response types for which we can hope to bound all treatment effects, absent
additional assumptions enabling extrapolation to unobservable counterfactuals.

4.2 LATE-2 theorem

Theorem LATE-2 (Informative partial identification of a local average treatment
effect for two treatments with cross-randomized prices). Suppose prices of treatments
a and b are randomized in the 3x3 experimental design (Assumption I, Section 1.5;
Assumption 3x3, Section 4.1), individual choices satisfy the targeted additive random
utility model with no income effects (Assumption TRUM, Section 1.2.1; Assumption
ARUM, Section 1.2.2; Assumption NIE, Section 4.1), and additional technical as-
sumptions on selection (Assumptions TRUM.1, TRUM.2, & TRUM.3, Section 1.4)
and on outcomes (Assumption Y.1 & Y.2, Section 1.5) hold.

Complier group probabilities are identified, and satisfy (Section 4.2.1):

P[Ui ∈ Cxya] = 1− Pb(x, y)− P0(x+ 1, y)− Pa(x+ 1, y + 1) (6)

P[Ui ∈ Cxyb] = 1− Pa(x, y)− P0(x, y + 1)− Pb(x+ 1, y + 1) (7)
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Mean potential outcomes for selected pairs of complier groups are identified, and
satisfy (Section 4.2.2):

E[Yi0|Ui ∈ Cxya∪Cxyb] =
(PY0(x+ 1, y + 1)− PY0(x+ 1, y))− (PY0(x, y + 1)− PY0(x, y))

(P0(x+ 1, y + 1)− P0(x+ 1, y))− (P0(x, y + 1)− P0(x, y))
(8)

E[Yia|Ui ∈ Cxyb∪Cx,y+1,a] =
(PYa(x, y + 1)− PYa(x+ 1, y + 2))− (PYa(x, y)− PYa(x+ 1, y + 1))

(Pa(x, y + 1)− Pa(x+ 1, y + 2))− (Pa(x, y)− Pa(x+ 1, y + 1))
(9)

E[Yib|Ui ∈ Cxya∪Cx+1,y,b] =
(PYb(x+ 1, y)− PYb(x, y))− (PYb(x+ 2, y + 1)− PYb(x+ 1, y + 1))

(Pb(x+ 1, y)− Pb(x, y))− (Pb(x+ 2, y + 1)− Pb(x+ 1, y + 1))
(10)

Under monotonicity of local average treatment response (Assumption MLATR,
Section 4.2.4), mean potential outcomes for C01a ∪ C10b under 0, a, and b satisfy the
following bounds (Section 4.2.4); in the limit as the difference between randomized
prices approaches 0, both bounds converge to the marginal treatment response, and
monotonicity of local average treatment response holds to first order.

E[Yi0|Ui ∈ C01a ∪ C10b] ∈[
min

{
E[Yi0|Ui ∈ C01a ∪ C01b]−

∣∣∣∣ P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C01b]

∣∣∣∣ (Y − Y ),

E[Yi0|Ui ∈ C10a ∪ C10b]−
∣∣∣∣ P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C10b]

P[Ui ∈ C10a ∪ C10b]

∣∣∣∣ (Y − Y )

}
,

max

{
E[Yi0|Ui ∈ C01a ∪ C01b] +

∣∣∣∣ P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C01b]

∣∣∣∣ (Y − Y ),

E[Yi0|Ui ∈ C10a ∪ C10b] +

∣∣∣∣ P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C10b]

P[Ui ∈ C10a ∪ C10b]

∣∣∣∣ (Y − Y )

}]
(11)
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E[Yia|Ui ∈ C01a ∪ C10b] ∈[
min

{
E[Yia|Ui ∈ C00b ∪ C01a]−

∣∣∣∣ P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C01a]

P[Ui ∈ C00b ∪ C01a]

∣∣∣∣ (Y − Y ),

E[Yia|Ui ∈ C10b ∪ C11a]−
∣∣∣∣ P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C10b]

P[Ui ∈ C10b ∪ C11a]

∣∣∣∣ (Y − Y )

}
,

max

{
E[Yia|Ui ∈ C00b ∪ C01a] +

∣∣∣∣ P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C01a]

P[Ui ∈ C00b ∪ C01a]

∣∣∣∣ (Y − Y ),

E[Yia|Ui ∈ C10b ∪ C11a] +

∣∣∣∣ P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C10b]

P[Ui ∈ C10b ∪ C11a]

∣∣∣∣ (Y − Y )

}]
(12)

E[Yib|Ui ∈ C01a ∪ C10b] ∈[
min

{
E[Yib|Ui ∈ C01a ∪ C11b]−

∣∣∣∣ P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C11b]

∣∣∣∣ (Y − Y ),

E[Yib|Ui ∈ C00a ∪ C10b]−
∣∣∣∣ P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C10b]

P[Ui ∈ C00a ∪ C10b]

∣∣∣∣ (Y − Y )

}
,

max

{
E[Yib|Ui ∈ C01a ∪ C11b] +

∣∣∣∣ P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C11b]

∣∣∣∣ (Y − Y ),

E[Yib|Ui ∈ C00a ∪ C10b] +

∣∣∣∣ P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
− P[Ui ∈ C10b]

P[Ui ∈ C00a ∪ C10b]

∣∣∣∣ (Y − Y )

}]
(13)

I prove Theorem LATE-2 in four steps. In Section 4.2.1, I establish identification
of complier group probabilities. In Section 4.2.2, I establish identification of mean
potential outcomes for selected pairs of complier groups. In Section 4.2.3, I justify the
need for an additional assumption by establishing that absent monotonicity of local
average treatment response (“MLATR”), bounds may be uninformative in the limit
as the difference between randomized prices approaches 0. In Section 4.2.4, I derive
bounds on LATE-2 under MLATR. I show these bounds converge to the marginal
treatment response, and correspondingly that MLATR holds to first order, as the
difference between randomized prices approaches 0.

Theorem LATE-2 establishes bounds on mean potential outcomes under 0, a, and
b for C01a ∪ C10b, implying bounds the local average treatment effect of a and b for
C01a ∪ C10b.
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4.2.1 Complier group probabilities

I present a graphical proof of identification of complier group probabilities for Cxya

(Equation 6) and Cxyb (Equation 7) in Figures 4c and 4d, respectively; I present an
alternative proof in Appendix A.4.

The intuition underlying the identification argument in Figure 4c, for complier
group Cxya, is as follows; the intuition parallels the two unique characterizations of
complier groups in Section 4.1.1, one based on their treatment response type and the
other based on their latent utilities. Cxya comprises the only individuals for whom
Di(x, y) 6= b (instead, they choose a), Di(x + 1, y) 6= 0 (instead, they choose b), and
Di(x+1, y+1) 6= a (instead, they choose 0); this immediately yields Equation 6. This
characterization can be interpreted as follows. The willingness to pay of individuals in
Cxya for a is high enough that they choose it at (x, y), but low enough that increasing
the price of a by one unit (to x+1) pushes them to prefer both 0 and b. In addition,
their willingness to pay for b is high enough that they choose it at (x+1, y), but low
enough that increasing the price of b by one unit (to y + 1) pushes them to prefer 0.

To gain additional intuition, I add Equations 6 and 7 together, and apply the
identity P0(z) + Pa(z) + Pb(z) = 1, yielding

P [Ui ∈ Cxya ∪ Cxyb] = (P0(x+ 1, y + 1)− P0(x+ 1, y))− (P0(x, y + 1)− P0(x, y))

(14)
P [Ui ∈ Cxyb ∪ Cx,y+1,a] = (Pa(x, y + 1)− Pa(x+ 1, y + 2))−(Pa(x, y)− Pa(x+ 1, y + 1))

(15)
P [Ui ∈ Cxya ∪ Cx+1,y,b] = (Pb(x+ 1, y)− Pb(x, y))−(Pb(x+ 2, y + 1)− Pb(x+ 1, y + 1))

(16)
These equations are difference-in-difference estimands, and intuitively are discrete
versions of the “local difference-in-differences” expression for the density of Ui in
Equation 4. That these formulas depend only on P0, Pa, and Pb, respectively, suggests
a related approach can be used to identify mean potential outcomes under 0, a, and b,
respectively, for the complier groups suggested by Equations 14, 15, and 16; that is,
a discrete version of Equation 5 and Figure 3. I implement this approach in Section
4.2.2, and apply it to bound a local average treatment effect in Sections 4.2.3 and
4.2.4.
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4.2.2 Mean potential outcomes for selected complier groups

I establish identification of mean potential outcomes for selected complier groups in
Equations 8, 9, and 10. While complier group probabilities can be derived from
difference-in-differences of treatment choice indicators (Equations 14, 15, and 16),
mean potential outcomes are derived from the ratio of difference-in-differences of
treatment choice indicators times outcomes to difference-in-differences of treatment
choice indicators. This is a natural extension of the approach of Abadie (2002), who
similarly establish identification of average outcomes under control and treatment for
compliers with one treatment.

Figures 5a, 5c, and 5e provide a graphical intuition underlying the identification
results in Equations 8, 9, and 10, respectively; the approach is simply a discrete ver-
sion of Figure 3, which presents a graphical argument for identification of the marginal
treatment response. I present a formal derivation of Equation 9 in Appendix A.5;
Equation 10 holds symmetrically, and Equation 8 follows from a similar derivation.

Mean potential outcomes under 0, a, and b are not identified for all 8 complier
groups in the 3x3 design, and in fact are not point identified for any single one of the 8
complier groups. Figures 5b, 5d, and 5f show the 4, 2, and 2 pairs of complier groups
for whom the mean potential outcome under 0, a, and b are, respectively, identified
by Equations 8, 9, and 10. The intersection of these pairs, C01a ∪ C10b, represents a
natural group of compliers for whom to bound a local average treatment effect.

4.2.3 Uninformative bounds on LATE-2

Absent additional assumptions, bounding mean potential outcomes under 0, a, or b

for C01a∪C10b, as suggested by Figure 5, appears challenging. Specifically, we are only
able to estimate mean potential outcome under 0 for C01a ∪ C01b (rather than C01a),
and for C10a ∪C10b (rather than C10b). However, these averages could be rationalized
by very low (or very high) mean potential outcomes for C01a and C10b, jointly with
very high (or very low) mean potential outcomes for C01b and C10a.

Unfortunately, and consistent with this intuition, worst-case bounds on a local
average treatment effect are completely uninformative in the limit as the price incre-
ments in the 3x3 experimental design approach 0.

Proposition 3. Suppose Assumptions I, 3x3(ε), TRUM, ARUM, NIE, TRUM.1,
TRUM.2, TRUM.3, Y.1, and Y.2 hold. Suppose MTR0(0) = 1

2
(Y + Y ). Then the
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Figure 5: Set identification of a local average treatment effect in the 3x3 design

(a) E [Yi0|Ui ∈ C11a ∪ C11b]
(b) Mean potential outcome under 0 identi-
fied for 4 complier groups

(c) E [Yia|Ui ∈ C00b ∪ C01a]
(d) Mean potential outcome under a identi-
fied for 2 complier groups

(e) E [Yib|Ui ∈ C00a ∪ C10b]
(f) Mean potential outcome under b identified
for 2 complier groups
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limit as ε → 0 of Manski (1990) bounds on E[Yi0|Ui ∈ C01a(ε) ∪ C10b(ε)] approaches
[Y , Y ].

Proof. A formal proof is presented in Appendix A.6. Less formally, suppose complier
group mean potential outcomes under 0 for C01a(ε) and C10b(ε) are equal to Y , and
for C01b(ε) and C10a(ε) are equal to Y . Note that, in general, there is no guarantee
that this would be consistent with the identified mean potential outcomes under 0 for
C01a(ε)∪C01b(ε) and C10a(ε)∪C10b(ε). However, in the limit as ε → 0, the density of
latent utilities approaches uniform and complier group probabilities approach ε2

2
f(0),

while identified mean potential outcomes under 0 approach MTR0(0). Identified
complier group mean potential outcomes under 0 therefore converge to

lim
ε→0

E[Yi0|Ui ∈ Cxya ∪ Cxyb] =
1

2
lim
ε→0

E[Yi0|Ui ∈ Cxya] +
1

2
lim
ε→0

E[Yi0|Ui ∈ Cxyb]

= MTR0(0) =
1

2
(Y + Y )

This is consistent with the supposed complier group mean potential outcomes under
0, which realize the proposed lower bound of Y .

4.2.4 Informative bounds on LATE-2 under monotone local average treat-
ment response

Absent additional assumptions, and focusing on the mean potential outcome under
0 for concreteness, the lower bound on mean potential outcomes for C01b ∪ C10a was
uninformative as observed potential outcomes could be rationalized by mean potential
outcomes in C01a and C10b being much lower than those in C01b and C10a. This
possibility requires a particularly pernicious, and likely unrealistic, form of selection:
an increase in willingness-to-pay for a by 1 unit and a decrease in willingness-to-pay
for b by 1 unit is both associated with a large decrease in mean potential outcomes
(going from C01a to C10a) and also a large increase in mean potential outcomes (going
from C01b to C10b). Assuming away the possibility of such pernicious selection may
yield tighter bounds.

I therefore propose bounds on LATE-2 under a multidimensional generalization
of monotone treatment selection (Manski & Pepper, 2000), monotone local average
treatment response (“MLATR”). MLATR rules out the possibility that a given com-
plier group translation can increase potential outcomes under treatment d in one
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complier group but decrease potential outcomes under treatment d in another com-
plier group. For comparison, monotone treatment selection imposes that the mean
potential outcome under treatment d is increasing in scalar latent utility, and therefore
implies MLATR.7

Assumption MLATR (Monotone local average treatment response). Let d ∈ {0, a, b},
then

E[Yid|Ui ∈ Cxyk] ≥ E[Yid|Ui ∈ Cx+wa,y+wb,k]

⇔ E[Yid|Ui ∈ Cx′y′k] ≥ E[Yid|Ui ∈ Cx′+wa,y′+wb,k]

Proposition 4. Suppose Assumptions I, 3x3(ε), TRUM, ARUM, NIE, TRUM.1,
TRUM.2, TRUM.3, Y.1, and Y.2 hold. Then Assumption MLATR holds to first
order in the limit as ε → 0.

Proof. A formal proof is presented in Appendix A.7. Less formally, note that the
marginal treatment response and density of latent utilities are continuously differen-
tiable by assumption; as a result, as ε → 0, the inequalities in Assumption MLATR de-
pend only on the sign of the directional derivative of marginal treatment response with
respect to (ua, ub) along the vector (wa, wb), which approaches a common value.

Proposition 5. Suppose Assumptions I, 3x3, TRUM, ARUM, NIE, TRUM.1, TRUM.2,
TRUM.3, Y.1, Y.2, and MLATR hold. Then the bounds in Equations 11, 12, and 13
are satisfied.

Proof. I derive the lower bound in Equation 11; the upper bound, and in turn Equa-
tions 12 and 13, follow by a symmetric argument.

First, I decompose the mean potential outcome under 0 in C01a ∪ C10b into a
weighted average of mean potential outcomes in C01a and C10b.

E[Yi0|Ui ∈ C01a ∪ C10b]

=
P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
E[Yi0|Ui ∈ C01a] +

P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
E[Yi0|Ui ∈ C10b]

7With two-or-higher-dimensional latent utility Ui, which this paper concerns, it is no longer nec-
essarily the case that monotone marginal treatment response with respect to elementwise comparison
of latent utilities is sufficient for MLATR, unless the density of latent utility f is uniform.
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Second, I note that either E[Yi0|Ui ∈ C01b] ≤ E[Yi0|Ui ∈ C10b] or E[Yi0|Ui ∈
C01b] ≥ E[Yi0|Ui ∈ C10b]. If the latter, then by Assumption MLATR, E[Yi0|Ui ∈
C01a] ≥ E[Yi0|Ui ∈ C10a]. As a consequence, either E[Yi0|Ui ∈ C10b] ≥ E[Yi0|Ui ∈ C01b]

or E[Yi0|Ui ∈ C01a] ≥ E[Yi0|Ui ∈ C10a]. I substitute each of these inequalities into the
above equation, yielding

E[Yi0|Ui ∈ C01a ∪ C10b] ≥

min

{
P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
E[Yi0|Ui ∈ C01a] +

P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
E[Yi0|Ui ∈ C01b],

P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
E[Yi0|Ui ∈ C10a] +

P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
E[Yi0|Ui ∈ C10b]

}
Lastly, I decompose the mean potential outcome under 0 for C01a ∪ C01b and

C10a ∪ C10b into weighted averages of mean potential outcomes in C01a and in C01b,
and in C10a and in C10b, respectively. Applying these decompositions, after adding
and substracting the mean potential outcomes from the terms on the right hand side
of the inequality, yields

E[Yi0|Ui ∈ C01a ∪ C10b] ≥

min

{
E[Yi0|Ui ∈ C01a ∪ C01b] +

(
P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
−

P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C01b]

)
(E[Yi0|Ui ∈ C01a]−E[Yi0|Ui ∈ C01b]) ,

E[Yi0|Ui ∈ C10a ∪ C10b] +

(
P[Ui ∈ C10b]

P[Ui ∈ C01a ∪ C10b]
−

P[Ui ∈ C10b]

P[Ui ∈ 10a ∪ C10b]

)
(E[Yi0|Ui ∈ C10b]−E[Yi0|Ui ∈ C10a])

}

Lastly, I substitute worst case bounds of [Y − Y , Y − Y ] for E[Yi0|Ui ∈ C01a] −
E[Yi0|Ui ∈ C01b] and E[Yi0|Ui ∈ C10b]−E[Yi0|Ui ∈ C10a], which yields the lower bound
in Equation 11.

Proposition 6. Suppose Assumptions I, 3x3(ε), TRUM, ARUM, NIE, TRUM.1,
TRUM.2, TRUM.3, Y.1, Y.2, and MLATR hold. Then the bounds in Equations 11,
12, and 13 approach MTR0(0), MTRa(0), and MTRb(0), respectively, as ε → 0.

Proof. A formal proof is presented in Appendix A.8. Less formally, as ε → 0, the den-
sity of latent utilities approaches uniform and complier group probabilities therefore
converge to ε2

2
f(0), while complier group mean potential outcomes under d converge

to MTRd(0). Substituting these limits into the bounds in Equations 11, 12, and 13
yields the desired result.
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The simultaneous weakness (Proposition 4) and strength (Proposition 6) of As-
sumption MLATR motivate the focus on bounds on LATE-2 derived under Assump-
tion MLATR in Proposition 5. Weakness, in that Proposition 4 implies that Assump-
tion MLATR holds for small randomized price changes. Strength, in that Proposition
6 implies that Assumption MLATR yields bounds on LATE-2 that converge to MTE
for small randomized price changes, while absent Assumption MLATR there is no
guarantee that bounds are even informative.

4.3 Discussion

This section establishes informative partial identification of LATE-2 under the 3x3
experimental design with no income effects on treatment demand; I make three key
observations about this result. First, it imposes a strong assumption on the support of
the instrument (the 3x3 experimental design), but one that is within the control of the
researcher. Second, it derives identification from assumptions on selection into treat-
ment (with the exception of monotonicity of local average treatment response, which
I discuss below), rather than assumptions on outcomes. Third, imposing a strong
assumption on the support of the instrument (cross-randomized prices) enables a
testable, (often) empirically reasonable, and economically interpretable assumption
on selection to suffice for partial identification of LATE-2: no income effects on treat-
ment demand.

In these three regards, the results in this section are most closely related to work
that establishes identification of treatment effects in models motivated by sequential,
rather than simultaneous, treatment choice (Arteaga, 2023; Humphries et al., 2023;
Kamat et al., 2024). Their identification assumptions can be derived under an alter-
native two-stage experimental design: individuals are first offered a random price for
the option to choose between a and b (with outside option 0), and then conditional
on that choice, are offered a random price for b (with outside option a). In sharp
contrast to the simultaneous design analyzed in this paper, monotonicity (Imbens
& Angrist, 1994) is sufficient for identification of a LATE of b relative to a in the
sequential design (Heckman & Pinto, 2018; Arteaga, 2023). However, LATE-2 is not
necessarily informatively partially identified, as the distribution of outcomes under 0
for 0-to-Always a, 0-to-Complier a-to-b, and 0-to-Always b compliers cannot be sep-
arated. Whether this tradeoff suggests the choice of simultaneous or sequential price
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offers will depend on aspects of the empirical context faced by the researcher.
Section 4.2.3 establishes a formidable barrier to identification of LATE-2: even

with full knowledge of treatment demand, discrete variation in prices of multiple treat-
ments is insufficient to guarantee informative bounds on LATE-2. One contribution
of this section is to propose the assumption of monotonicity of local average treatment
response (“MLATR”), a multidimensional generalization of monotone treatment se-
lection (Manski & Pepper, 2000), and to establish that the bounds on LATE-2 under
MLATR asymptotically converge to the MTE with respect to the assigned price in-
creases in the 3x3 experimental design. In light of the nonidentification result in
Section 4.2.3, the credibility of MLATR, or an alternative restriction on selection on
outcomes, is essential to the empirical applicability of the theoretical results in this
paper.

5 Conclusion

Identification of effects of multiple treatments with instrumental variables brings chal-
lenges not present in the case of a binary treatment (Imbens & Angrist, 1994): mono-
tonicity and instrument independence and exclusion are no longer sufficient to identify
even average flows of individuals between treatments. Recent work has derived iden-
tification of treatment effects under parsimonious and testable generalizations of the
monotonicity assumption on choice behavior: unordered partial monotonicity and
either identical compliers (Mountjoy, 2022) or an additive random utility model (Lee
& Salanié, 2018). I extend and bridge identification results across these papers: I
show these assumptions are equivalent to no defiers, analogously to Vytlacil (2002),
and that treatment effects are identified for individuals indifferent between any set of
treatments.

Principally, this paper establishes partial identification of a local average treat-
ment effect for two treatments for a common set of compliers under the 3x3 exper-
imental design cross randomizing zero, one, and two unit increases in the price of
two treatments. This experimental design, and the associated estimator, may find
applications in contexts in which multidimensional selection into multiple treatments
is a first order concern.

This paper does not develop an estimator or a statistical test with continuous
instruments. Conditional on estimation of additive utility indices and the distribu-
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tion of unobserved heterogeneity, results from Kline & Walters (2016) suggest control
function approaches can be used to recover the marginal treatment effect. Develop-
ing statistical tests of the additive random utility model, and developing estimators
of additive utility indices and the distribution of unobserved heterogeneity without
parametric restrictions on their functional forms, are important directions for future
work.

The conditional equivalence of the assumptions no defiers, identical compliers,
and the additive random utility model, and the possibility of uninformative bounds
with discrete instruments absent additional assumptions, underscores the difficulty of
both relaxing these assumptions and identifying treatment effects. Absent restrictions
on heterogeneity of individual treatment responses, unordered partial monotonicity
and instrument independence and exclusion are sufficient to identify treatment effects
with large instrument support (Heckman et al., 2008), or to bound treatment effects
with discrete instruments under additional restrictions on selection on outcomes (Ka-
mat et al., 2023; Lee & Salanié, 2023). This paper proposes monotonicity of local
average treatment response as a complementary restriction on outcomes alongside
no defiers; however, alternative stronger restrictions on selection on outcomes, cou-
pled with weaker restrictions on selection heterogeneity than no defiers, may enable
tighter (and perhaps more credible in a given context) bounds on treatment effects
while retaining falsifiability.
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A Appendix

A.1 Assumption UPM ⇒ Assumption TRUM

Proof. Fix i ∈ I such that Assumption UPM holds. Suppose the support of Di(·) is
equal to K, that is for each treatment d ∈ K there is a value of the instrument that

induces i to choose d. Represent the interval support of the instrument Z ≡
K×
k=1

Zk,

where Zk ≡ [Zk, Zk]. Assume that Di(Z) = 1; this assumption is without loss of
generality as, by Assumption UPM, were Di(Z) = 0, then Di(z) = 0 for all z ∈ Z
contradicting the assumption that Di(·) has full support.

I will show that Assumption TRUM holds. The proof will be constructive. As the
resulting utilities Vid(z) for d ∈ K are ordinal, we can transform them so they take
values in [−1, 1]. Therefore, if the support of Di(·) is not equal to K, then for any
treatments that i does not select for any value of z ∈ Z, set their associated utilities
equal to −2. Assumption UPM then implies Assumption TRUM.

I proceed in three steps:

• Willigness-to-pay for k: I show there exists z∗ik for each k ∈ K \ {0}, such
that Di(z) = 0 if and only if zk > z∗ik for all k ∈ K \ {0}, and Di(z) = k only if
zk < z∗ik.

• Equivalent variation of option to buy k relative to choosing 1: For all
k ∈ K \ {0, 1}, I show there exists zi1k(zk) such that zi1k(z

∗
ik) = z∗i1, zi1k(zk)

is increasing in zk, Di(z) = 1 only if z1 < zi1k(zk), and Di(z) = k only if
z1 > zi1k(zk).

• From equivalent variations to utility indices: I then construct µik(zk) for
each k ∈ K \ {0} satisfying Assumption TRUM.

Interpreting instruments as prices, the first step corresponds to showing that each
individual has a maximum willingness-to-pay z∗ik for treatment k, and the individual
doesn’t buy anything if and only if all prices are above their maximum willingness-
to-pays. The second step corresponds to constructing the equivalent variation for the
opportunity to buy k at price zk instead of good 1 at price z1: this equivalent variation
is equal to z1−zi1k(zk), that is the amount that leaves individual i indifferent between
choosing 1 and receiving that amount (paying zi1k(zk)), and choosing k (paying zk).
The third step uses equivalent variations to construct utility indices: individual i

1
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chooses good k over good j only if the equivalent variation of the option to choose k,
relative to choosing good 1, is larger than that of j.

Construction of z∗ik For all k ∈ K \ {0}, let

z∗ik ≡ max
z∈Z:Di(z)=k

zk

By construction, Di(z) = k only if zk < z∗ik.
It therefore holds that Di(z) = 0 if zk > z∗ik for all k ∈ K \ {0}.
Suppose, for contradiction, there exists k ∈ K \ {0} and z ≡ (zk, z−k) such that

zk < z∗ik, but Di(z) = 0. By definition of z∗ik, there exists z′ ≡ (z′k, z
′
−k) such that

z′k > zk and Di(z
′) = k. Define z′′−k to be the element-wise maximum of z−k and

z′−k. As Z is an interval of RK , (zk, z
′′
−k), (z

′
k, z

′′
−k) ∈ Z. By Assumption UPM,

Di(zk, z
′′
−k) = 0 and Di(z

′
k, z

′′
−k) = k, as increasing z−k and z′−k, respectively, cannot

cause any individuals to shift out of 0 nor out of k. However, we then have z′k > zk,
Di(z

′
k, z

′′
−k) = k, but Di(zk, z

′′
−k) = 0, contradicting Assumption UPM. Therefore,

Di(z) = 0 implies that zk ≥ z∗ik for all k ∈ K \ {0}.

Construction of zi1k(zk) Let

zi1k(zk) ≡ max
z′∈Z:Di(z′)=1,z′k≤zk

z′1

zi1k(zk) exists, as Di(zk, Z−k) = 1 by Assumption UPM, as Di(Z) = 1 and zk ≥
Zk.

By construction, zi1k(zk) is increasing in zk, as it takes the maximum of a function
over an expanding set. Similarly, zi1k(zk) ≤ z∗i1.

Fix k ∈ K \ {0, 1}, zk > z∗ik. Choose any z′ ∈ Z such that Di(z
′) = 0; therefore,

z′` > z∗i` for all ` ∈ K \ {0}. Note that Di(z
′
1, zk, z

′
−{1,k}) = 0, as it remains that

zk > z∗ik and we have not changed any other elements of z′. In turn, note that
Di(z

∗
i1, zk, z

′
−{1,k}) = 1, as we have decreased z′1 to z∗i1 (so Di(z

∗
i1, zk, z

′
−{1,k}) 6= 0)

without changing any other elements of z′. Therefore, zi1k(zk) = z∗i1 for all zk > z∗ik.
By construction, Di(z) = 1 only if z1 ≤ zi1k(zk).
Suppose, for contradiction, there exists z such that Di(z) = k and z1 < zi1k(zk).

Find z′ such that z′1 = zi1k(zk), z′k ≤ zk, Di(z
′) = 1; such z′ exists by definition

2
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of zi1k(zk). Note that Di(zk, z
′
−k) = 1 by Assumption UPM, as increasing z′k to zk

cannot cause i to shift out of 1. Define z′′ by z′′1 = z1, z′′k = zk, and z′′` = max{z`, z′`}
for all ` ∈ K \ {0, 1, k}; Di(z

′′) = k by Assumption UPM as Di(z) = k. Define
z′′′ by z′′′1 = z′1, z′′′k = zk, z′′′` = max{z`, z′`} for all ` ∈ K \ {0, 1, k}; Di(z

′′′) = 1

by Assumption UPM as zk ≥ z′k and Di(z
′) = 1. z′′ and z′′′ are identical, except

z′′′1 = zi1k(zk) > z1 = z′′1 , contradicting Assumption UPM. Therefore, Di(z) = k only
if z1 ≥ zi1k(zk).

Construction of µik(zk) Let

µi1(z1) ≡ z1 − z∗i1

and, for all k ∈ K \ {0, 1},

µik(zk) ≡ 1{zk ≤ z∗ik} (zi1k(zk)− z∗i1) + 1{zk > z∗ik} (zk − z∗ik)

I set Uik = 0 for all k ∈ K \ {0}.
Note that µik(zk) is an increasing function of zk, as zk and zi1k(zk) are both

increasing functions of zk, zk − z∗ik > 0 whenever zk > z∗ik, and zi1k(zk)− z∗i1 ≤ 0.
For Assumption TRUM, it therefore suffices to show that, for any k ∈ K, Di(z) =

k if and only if µik(zk) < µi`(z`) for all ` ∈ K \ {k}, with the abuse of notation that
µi0(z0) = 0.

First, note that Di(z) = 0 if and only if zk ≥ z∗ik for all k ∈ K \ {0}, which holds
if and only if µik(zk) ≤ 0 for all k ∈ K \ {0}.

Second, note that Di(z) = 1 if and only if z1 < z∗i1 and z1 ≤ zi1k(zk) for all
k ∈ K \ {0}. These hold if and only if µi1(z1) < 0 and µi1(z1) ≤ µik(zk) for all
k ∈ K \ {0}, respectively.

It remains to show that Di(z) = k if and only if µik(zk) < µi`(z`) for all ` ∈ K\{k},
for all k ∈ K \ {0, 1}.

Proof of Di(z) = k ⇐ µik(zk) < µi`(z`) I proceed in three steps: I show Di(z) 6= 0,
Di(z) 6= 1, and Di(z) 6= ` for all ` ∈ K \ {0, 1, k}. Therefore, Di(z) = k.

First, by assumption, µik(zk) < 0. µik(zk) > 0 whenever zk > z∗ik, and therefore
zk < z∗ik. Therefore, Di(z) 6= 0 by definition of z∗ik.

Second, as zk < z∗ik, µik(zk) = zi1k(zk) − z∗i1. By assumption, µik(zk) < µi1(z1);

3
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substituting definitions into the inequality yields zi1k(zk)−z∗i1 < z1−z∗i1, or zi1k(zk) <
z1. By definition of zi1k(zk), then Di(z) 6= 1.

Third, suppose for contradiction that Di(z) = ` for ` ∈ K \ {0, 1, k}. Therefore,
z` < z∗i`, and µi`(z`) = zi1`(z`)− z∗i1. By assumption, µik(zk) < µi`(z`), and therefore
zi1k(zk) < zi1`(z`). By definition, this implies that there exists z′ such that z′1 ≤
zi1`(z`), z′1 > zi1k(zk), z′` = z`, and Di(z

′) = 1. Set z′k equal to zk; by Assumption
UPM, either Di(z

′) = 1 or Di(z
′) = k. As z′1 > zi1k(zk), Di(z

′) 6= 1, and therefore
Di(z

′) = k. Set zj and z′j equal to max{zj, z′j} for all j ∈ K \ {0, 1, k, `}. By
Assumption UPM, Di(z) = ` and Di(z

′) = k. Finally, set z′1 = z1; either Di(z
′) = k

or Di(z
′) = 1, but this is a contradiction as z′ = z. Therefore, Di(z) 6= `.

Proof of Di(z) = k ⇒ µik(zk) < µi`(z`) I proceed in three steps: I show Di(z) = k

implies µik(zk) ≤ 0, µik(zk) ≤ µi1(z1), and µik(zk) ≤ µi`(z`).
First, Di(z) = k implies that zk < z∗ik. Therefore, µik(zk) = zi1k(zk) − z∗i1, and

therefore µik(zk) ≤ 0.
Second, Di(z) = k implies that z1 > zi1k(zk). Therefore z1 − z∗i1 > zi1k(zk)− z∗i1,

and substituting yields µik(zk) < µi1(z1).
Third, fix ` ∈ K \ {0, 1, k}. Suppose for contradiction that zi1k(zk) > zi1`(z`).

Then there exists z′ such that z′1 ≤ zi1k(zk), z′1 > zi1`(z`), z′k = zk, and Di(z
′) = 1.

Set z′` = z`; by Assumption UPM either Di(z
′) = 1 or Di(z

′) = `. As z′1 > zi1`(z`),
Di(z

′) 6= 1, and therefore Di(z
′) = `. Set zj and z′j equal to max{zj, z′j} for all

j ∈ K \ {0, 1, k, `}. By Assumption UPM, Di(z) = k, and Di(z
′) = `. Finally,

set z′1 = z1; either Di(z
′) = ` or Di(z

′) = 1, but this is a contradiction as z′ = z.
Therefore, zi1k(zk) ≤ zi1`(z`), and therefore µik(zk) ≤ µi`(z`).

A.2 Assumption IC ⇒ Homogeneous instrument sensitivity

Proof. First, I characterize the set of values of Ui conditional on µi that correspond
to Di(z

′
k, z−k) = k,Di(zk, z−k) = `. Note Ui` − µi`(z`) ≥ max`′∈K\{k,`} Ui`′ − µi`′(z`′);

the values of Ui satisfying this inequality are fixed with respect to z′k, and include
all possible values of Uik. Therefore represent the values of the latent indices Ui,−k

satisfying this inequality as U`,−k(z−k, µi) ≡ {u−k : u` − µi`(z`) ≥ max`′∈K\{k,`} u`′ −
µi`′(z`′)}. Note, by construction, Di(zk, z−k) = ` implies that Ui,−k ∈ U`,−k(z−k, µi).
Further, as Di(z

′
k, z−k) = k, Uik−µik(z

′
k) ≥ Ui`−µi`(z`) ≥ Uik−µik(zk), and therefore

Uik ∈ [Ui` − µi`(z`) + µik(z
′
k), Ui` − µi`(z`) + µik(zk)].
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I let fk|−k(·|Ui,−k, µi) denote the conditional density of Uik given Ui,−k. I let
f−k(·|µi) denote the density of Ui,−k. I proceed in 4 steps below. I begin with the left
side of the equality in Assumption IC, the limit as z′k increases to zk of the expectation
of y(Vi) given i chooses k at (z′k, z−k) but chooses ` at (zk, z−k).

First, I express the conditional expectation as the ratio of integrals, of y(u −
m(·))f(u|m) and f(u|m), respectively, over the set of values u satisfying the above
treatment choices, and with respect to the probability measure F over µi. I factor the
integration, and the density f , into integration over uk conditional on u−k, and over
u−k. The denominator is non-zero, as it is strictly positive for each µi = m, as the
density f is strictly positive (Assumption TRUM.2) and µ′

ik(zk) is strictly positive
(Assumption TRUM.3).

Second, I note the numerator and denominator of the ratio both converge to
zero, as y (Assumption IC) and f (Assumption TRUM.2) are both bounded and the
limits of integration for uk conditional on u−k converge. I therefore apply L’Hopital’s
rule to evaluate the limit, replacing the numerator and the denominator with their
derivatives with respect to z′2 evaluated at z′2 = z2.

Third, I exchange the order of differentiation and integration, and fourth, I eval-
uate the derivative. The derivative involves changing the bounds of an integral in
the limit as the bounds converge, and is well defined as the conditional density, or
its product with y, being integrated is continuous. The resulting term after taking
derivatives is bounded, as y, f , and µik (by Assumption TRUM.1) are bounded,
allowing exchanging differentiation and integration in the third step.
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lim
z′
k↑zk

E[y(Vi)|Di(z
′
k, z−k) = k,Di(zk, z−k) = `]

= lim
z′
k↑zk

∫ ∫
U`,−k(z−k,µi)

∫ u`−µi`(z`)+µik(zk)

u`−µi`(z`)+µik(z′
k)

y(u−m(·))fk|−k(uk|u−k,m)dukf−k(u−k|m)du−kdF (m)∫ ∫
U`,−k(z−k,µi)

∫ u`−µi`(z`)+µik(zk)

u`−µi`(z`)+µik(z′
k)

fk|−k(uk|u−k,m)dukf−k(u−k|m)du−kdF (m)

=

d
dz′

k

∫ ∫
U`,−k(z−k,µi)

∫ u`−µi`(z`)+µik(zk)

u`−µi`(z`)+µik(z′
k)

y(u−m(·))fk|−k(uk|u−k,m)dukf−k(u−k|m)du−kdF (m)
∣∣∣
z′
k=zk

d
dz′

k

∫ ∫
U`,−k(z−k,µi)

∫ u`−µi`(z`)+µik(zk)

u`−µi`(z`)+µik(z′
k)

fk|−k(uk|u−k,m)dukf−k(u−k|m)du−kdF (m)
∣∣∣
z′
k=zk

=

∫ ∫
U`,−k(z−k,µi)

d
dz′

k

∫ u`−µi`(z`)+µik(zk)

u`−µi`(z`)+µik(z′
k)

y(u−m(·))fk|−k(uk|u−k,m)duk

∣∣∣
z′
k=zk

f−k(u−k|m)du−kdF (m)∫ ∫
U`,−k(z−k,µi)

d
dz′

k

∫ u`−µi`(z`)+µik(zk)

u`−µi`(z`)+µik(z′
k)

fk|−k(uk|u−k,m)duk

∣∣∣
z′
k=zk

f−k(u−k|m)du−kdF (m)

=

∫ ∫
U`,−k(z−k,µi)

y((u` − µi`(z`) + µik(zk), u−k)−m(·))µ′
ik(zk)f((u` − µi`(z`) + µik(zk), u−k)|m)du−kdF (m)∫ ∫

U`,−k(z−k,µi)
µ′
ik(zk)f((u` − µi`(z`) + µik(zk), u−k)|m)du−kdF (m)

(A1)

I apply the same sequence of steps for the right hand side of the equality of
Assumption IC. I then apply one additional step: I substitute uk = u`−µi`(z`)+µik(zk)

inside the integrals. This sequence of steps, and this change of variable, yields

lim
z′
`↓z`

E[y(Vi)|Di(z
′
`, z−`) = k,Di(z`, z−`) = `]

=

∫ ∫
Uk,−`(z−`,µi)

y((uk − µik(zk) + µi`(z`), u−`)−m(·))µ′
i`(z`)f((uk − µik(zk) + µi`(z`), u−`)|m)du−`dF (m)∫ ∫

Uk,−`(z−`,µi)
µ′
i`(z`)f((uk − µik(zk) + µi`(z`), u−`)du−`dF (m)

=

∫ ∫
U`,−k(z−k,µi)

y((u` − µi`(z`) + µik(zk), u−k)−m(·))µ′
i`(z`)f((u` − µi`(z`) + µik(zk), u−k)|m)du−kdF (m)∫ ∫

U`,−k(z−k,µi)
µ′
i`(z`)f((u` − µi`(z`) + µik(zk), u−k)|m)du−kdF (m)

(A2)

Assumption IC implies Equations A1 and A2 are equal; these equations are in-
tegrals of the density of “marginal” individuals (those for whom Ui` − µi`(z`) =

Uik − µik(zk)), with “marginal” individual i weighted by µ′
ik(zk) and µ′

i`(z`). While
the equality characterizing marginal individuals, Ui` − µi`(z`) = Uik − µik(zk), is well
defined, the expectation E[y(Vi)|Ui` − µi`(z`) = Uik − µik(zk)] is not necessarily well
defined, as the conditioning set has zero measure (Hoderlein et al., 2017). Consequen-
tially, in Equations A1 and A2, the weights on individuals are proportional to the rate
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at which the k-to-` complier fraction approaches zero in the limit, which is propor-
tional to responsiveness µ′

ik(zk) and µ′
i`(z`), respectively. Equality for all possible y(·)

and z requires these weighting schemes are identical, and therefore µ′
ik(zk)

µ′
i`(z`)

=
µ′
jk(zk)

µ′
j`(z`)

for all i, j ∈ I, z ∈ Z. This is equivalent to homogeneous instrument sensitivity.

A.3 Proposition MTR

Proof. I proceed in four steps. First, I briefly prove Equation 3; while this replicates
the result from Allen & Rehbeck (2019) and Bhattacharya (2023), I present it here
as I apply a similar approach to the proof of generalizations of Equations 4 and 5.
Second, third, and fourth, I derive generalizations of Equations 4 and 5 in three cases:
when k = 0, when k 6= 0 and 0 ∈ K0, and when k 6= 0 and 0 6∈ K0.

Equation 3 By Assumption TRUM and ARUM,

Pk(z) =

∫ ∞

µk(zk)

∫ uk−µk(zk)+µ`(z`)

−∞

∫ uk−µk(zk)+µ−{k,`}(z−{k,`})

−∞
f(u)du−{k,`}du`duk (A3)

Equation A3 integrates the density of Ui over the values of u that solve the inequalities
uk − µk(zk) ≥ 0 and uk − µk(zk) ≥ u` − µ`′(z`′) for all `′ ∈ K \ {0, k}. I divide these
latter inequalities into one for `, and the remainder for `′ ∈ K \ {0, k, `}.

To differentiate with respect to z`, I first factor the density

f(u) = fk(uk)f`|k(u`|uk)f−{k,`}|k,`(u−{k,`}|uk, u`)

I then exchange the order of differentiation and the first integral, and apply differen-
tiation. As a final step, I apply the change of variable uk = u` + µk(zk) − µ`(z`) to
the integral with respect to uk.

7
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∂

∂z`
Pk(z)

=
∂

∂z`

∫ ∞

µk(zk)
fk(uk)

∫ uk−µk(zk)+µ`(z`)

−∞
f`|k(u`|uk)

∫ uk−µk(zk)+µ−{k,`}(z−{k,`})

−∞
f−{k,`}|k,`(u−{k,`}|uk, u`)du−{k,`}du`duk

=

∫ ∞

µk(zk)
fk(uk)

∂

∂z`

∫ uk−µk(zk)+µ`(z`)

−∞
f`|k(u`|uk)

∫ uk−µk(zk)+µ−{k,`}(z−{k,`})

−∞
f−{k,`}|k,`(u−{k,`}|uk, u`)du−{k,`}du`duk

= µ′
`(z`)

∫ ∞

µk(zk)
fk,`(uk, uk−µk(zk)+µ`(z`))

∫ uk−µk(zk)+µ−{k,`}(z−{k,`})

−∞
f−{k,`}|k,`(u−{k,`}|uk, uk−µk(zk)+µ`(z`))du−{k,`}duk

= µ′
`(z`)

∫ ∞

µ`(z`)
fk,`(u`−µ`(z`)+µk(zk), u`)

∫ u`−µ`(z`)+µ−{k,`}(z−{k,`})

−∞
f−{k,`}|k,`(u−{k,`}|u`−µ`(z`)+µk(zk), u`)du−{k,`}du`

(A4)

Excluding the last step in Equation A4, applying the same steps to ∂
∂zk

E[Di`(z)]

yields the same expression as the last line of Equation A4, with the exception that
µ′
`(z`) is replaced with µ′

k(zk); taking the ratio of these two expressions immediately
yields Equation 3.

Generalizations of Equations 4 and 5 when k = 0 For k = 0, note that

P0(z) =

∫ µ(z)

−∞
f(u)du (A5)

Further, substituting E[Yi0|Ui = u] ≡ MTR0(u),

PY0(z) =

∫ µ(z)

−∞
MTR0(u)f(u)du (A6)

Next, choose K0 ⊆ K such that 0 ∈ K0, and denote K∗
0 ≡ K0 \{0}. Differentiating

both sides of Equation A5 with respect to zk for all k ∈ K∗
0 \ k yields

∂|K0|−1∏
k∈K∗

0
∂zk

P0(z) =

∏
k∈K∗

0

µ′
k(zk)

∫ µ−K∗
0
(z−K∗

0
)

−∞
f(µK∗

0
(zK∗

0
), u−K∗

0
)du−K∗

0
(A7)

Applying the same approach to Equation A6 yields

∂|K0|−1∏
k∈K∗

0
∂zk

PY0(z) =

∏
k∈K∗

0

µ′
k(zk)

∫ µ−K∗
0
(z−K∗

0
)

−∞
MTR0(µK∗

0
(zK∗

0
), u−K∗

0
)f(µK∗

0
(zK∗

0
), u−K∗

0
)du−K∗

0

(A8)

8
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Taking ratios, yields

∂|K0|−1∏
k∈K∗

0
∂zk

PY0(z)

∂|K0|−1∏
k∈K∗

0
∂zk

P0(z)
=

∫ µ−K∗
0
(z−K∗

0
)

−∞ MTR0(µK∗
0
(zK∗

0
), u−K∗

0
)f(µK∗

0
(zK∗

0
), u−K∗

0
)du−K∗

0∫ µ−K∗
0
(z−K∗

0
)

−∞ f(µK∗
0
(zK∗

0
), u−K∗

0
)du−K∗

0

= E[MTR0(Ui)|UiK∗
0
= µK∗

0
(zK∗

0
), Ui,−K∗

0
≤ µ−K∗

0
(z−K∗

0
)]

= E[MTR0(Ui)|Ui ∈ U(K0)]

(A9)

which establishes identification of the average marginal treatment response when
k = 0 for Proposition MTR. Intuitively, we can identify the mean potential outcome
under 0 for individuals indifferent between 0 and any set of treatments K∗

0 as these are
exactly the individuals who are pushed into 0 by a small increase in the instrument
associated with each treatment in K∗

0.
Lastly, note that when K0 = K, the right hand side of Equation A9 simplifies to

MTR0(µ(z)).

Generalizations of Equations 4 and 5 when k 6= 0, 0 6∈ K0 Let K∗
0 ≡ K0 \ {k}.

I apply the steps in Equation A4 to derive

∂|K0|−1∏
`∈K∗

0
∂z`

Pk(z) =

 ∏
`∈K∗

0

µ′
`(z`)

∫ ∞

µk(zk)

∫ uk−µk(zk)+µ−K0
(z−K0

)

−∞
f(uk−µk(zk)+µK∗

0
(zK∗

0
), u−K∗

0
)du−K0duk

I take the same (|K0| − 1)th partial derivative of PYk(z), and take ratios. Noting
that

{u : uk ≥ µk(zk), u−K0 ≤ uk−µk(zk)+µ−K0(z−K0), uK∗
0
= uk−µk(zk)+µK∗

0
(zK∗

0
)} = U(K0)

I derive
∂|K0|−1∏
`∈K∗

0
∂z`

PYk(z)

∂|K0|−1∏
`∈K∗

0
∂z`

Pk(z)
= E[MTRk(Ui)|Ui ∈ U(K0)] (A10)

When |K0| = 2, Equation A10 is equivalent to Equation 14 in Mountjoy (2022).

Generalizations of Equations 4 and 5 when k 6= 0, 0 ∈ K0 I begin by taking
the derivative of both sides of Equation A3 with respect to increasing µ`(z`) by an

9
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identical amount for all ` ∈ K \ {0}.

∂∑
`∈K\{0} µ

′
`(z`)∂z`

Pk(z) =

∫ µ−k(zk)

−∞
f(µk(zk), u−k)du−k (A11)

Note that in taking this derivative, we implicitly assumed that µ′
`(z`)/µ

′
k(zk) is iden-

tified for all ` ∈ K, as established by Equation 3.
Let K∗

0 ≡ K0 \ {0, k}, and K̃0 ≡ K0 \ {0}. Differentiating with respect to z` for
each ` ∈ K∗

0 yields

∂∑
`∈K\{0} µ

′
`(z`)∂z`

∂|K0|−2∏
`∈K∗

0
∂z`

Pk(z) =

∏
`∈K∗

0

µ′
`(z`)

∫ µ−K̃0
(z−K̃0

)

−∞
f(µK̃0

(zK̃0
), u−K̃0

)du−K̃0

I take the same (|K0| − 1)th partial derivative of PYk(z), and take ratios. Noting
that

{u : uk = µk(zk), uK∗
0
= µK∗

0
(zK∗

0
), u−K0 ≤ µ−K0} = U(K0)

I derive
∂∑

`∈K\{0} µ
′
`(z`)∂z`

∂|K0|−2∏
`∈K∗

0
∂z`

PYk(z)

∂∑
`∈K\{0} µ

′
`(z`)∂z`

∂|K0|−2∏
`∈K∗

0
∂z`

Pk(z)
= E[MTRk(Ui)|Ui ∈ U(K0)] (A12)

When |K0| = 2 and K = 2, Equation A12 is implicitly derived on Page 2610 of
Mountjoy (2022).

A.4 Complier group probabilities for Cxya and Cxyb

Proof. I derive Equation 6 (for P[Ui ∈ Cxya]), and note that Equation 7 holds sym-
metrically.

First, I apply the definition of Cxya in terms of inequalities that the latent utility
u must satisfy, which I simplify by eliminating redundant inequalities.

P[Ui ∈ Cxya] = P[Uia ∈ [x, x+ 1], Uib ∈ [y, y + 1], Uia − x ≥ Uib − y]

= P[Uia ≤ x+ 1, Uib ≥ y, Uia − x ≥ Uib − y]

Next, I use E1, E2, and E3 to denote the events Uia ≤ x + 1, Uib ≥ y, and
Uia − x ≥ Uib − y, respectively. I note that P[¬E1 ∧ ¬E2 ∧ ¬E3] = 0, as if Uib were

10
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smaller than y (the event ¬E1), and Uia were larger than x+1 (the event ¬E2), then
Uia − x > 1 > 0 > Uib − y (the event E3). I apply this, and then apply elementary
logical operations, to derive

P[Ui ∈ Cxya] = P[E1 ∧ E2 ∧ E3]

= P[(E1 ∧ E2 ∧ E3) ∨ (¬E1 ∧ ¬E2 ∧ ¬E3)]

= P[(E1 ∨ ¬E3) ∧ (E2 ∨ ¬E1) ∧ (E3 ∨ ¬E2)]

= P[¬(¬E1 ∧ E3) ∧ ¬(¬E2 ∧ E1) ∧ ¬(¬E3 ∧ E2)]

= 1−P[(¬E1 ∧ E3) ∨ (¬E2 ∧ E1) ∨ (¬E3 ∧ E2)]

= 1−P[¬E1 ∧ E3]−P[¬E2 ∧ E1]−P[¬E3 ∧ E2]

where the last step relies on the mutual exclusiveness of the three events ¬E1 ∧ E3,
¬E2 ∧ E1, and ¬E3 ∧ E2.

Lastly, I substitute

P[¬E1 ∧ E3] = P[Uia ≥ x+ 1 ∧ Uia − (x+ 1) ≥ Uib − (y + 1)] = Pa(x+ 1, y + 1)

P[¬E2 ∧ E1] = P[Uib ≤ y ∧ Uia ≤ x+ 1] = P0(x+ 1, y)

P[¬E3 ∧ E2] = P[Uia − x ≤ Uib − y ∧ Uib ≥ y] = Pb(x, y)

which yields Equation 6.

A.5 Complier group mean potential outcome under a

Proof. I begin by simplying Equation A3 in the case K = 2, that is Pa(z) expressed
as an integral over the density of latent utilities f(u). Similarly, I express PYa(z) as
an integral over the density of latent utilities times the marginal treatment response,
MTRa(u)f(u).

Pa(z) =

∫ ∞

za

∫ ua−za+zb

−∞
f(u)dubdua (A13)

PYa(z) =

∫ ∞

za

∫ ua−za+zb

−∞
MTRa(u)f(u)dubdua (A14)

11
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I substitute Equations A13 and A14 into the right hand side of Equation 9, yielding

(PYa(x, y + 1)− PYa(x+ 1, y + 2))− (PYa(x, y)− PYa(x+ 1, y + 1))

(Pa(x, y + 1)− Pa(x+ 1, y + 2))− (Pa(x, y)− Pa(x+ 1, y + 1))

=

∫ x+1

x

∫ ua−x+y+1

ua−x+y
MTRa(u)f(u)dubdua∫ x+1

x

∫ ua−x+y+1

ua−x+y
f(u)dubdua

=

∫
Cxyb∪Cx,y+1,a

MTR(a)(u)f(u)du∫
Cxyb∪Cx,y+1,a

f(u)du

(A15)

where the last equality in Equation A15 applies the substitutions

Cxyb = {u : ua ∈ [x, x+ 1], ub ∈ [y, y + 1], ua − x ≤ ub − y}

= {u : ua ∈ [x, x+ 1], ub ∈ [ua − x+ y, y + 1]}

and

Cx,y+1,a = {u : ua ∈ [x, x+ 1], ub ∈ [y + 1, y + 2], ua − x ≥ ub − (y + 1)}

= {u : ua ∈ [x, x+ 1], ub ∈ [y + 1, ua − x+ y + 1]}

The last line of Equation A15 is exactly E[MTRa(Ui)|Ui ∈ Cxyb ∪ Cx,y+1,a] =

E[Yia|Ui ∈ Cxyb ∪ Cx,y+1,a], which yields Equation 9.

A.6 Proposition 3

Below, and in Appendix A.7 and A.8, I use the “little o notation” g(x) = o(h(x)), for

functions g(x) and h(x) such that lim
x→0

g(x)

|h(x)|
= 0. I repeatedly apply two well known

properties of o(·): ao(h(x)) + bo(h(x)) = o(h(x)) for any constants a > 0 and b > 0,
and h2(x)o(h1(x)) = o(h1(x)h2(x)).

Proof. Below, I establish that the Manski (1990) lower bound on E[Yi0|Ui ∈ C01a(ε)]

is Y as ε → 0. By a symmetric argument, the lower bound on E[Yi0|Ui ∈ C10b(ε)]

is Y as ε → 0. These lower bounds are independently achievable, as they are tied
to the unobserved E[Yi0|Ui ∈ C01b(ε)] and E[Yi0|Ui ∈ C10a(ε)], respectively, both
taking on their maximum possible value. As a result, the lower bound on E[Yi0|Ui ∈
C01a(ε) ∪ C10b(ε)] is also Y as ε → 0.

12
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I proceed in three steps. First, I derive the Manski (1990) lower bound on
E[Yi0|Ui ∈ C01a(ε)] as a function of identified mean potential outcomes and complier
group probabilities. Second, I derive the limits of these identified mean potential
outcomes and complier group probabilities as ε → 0. Third, I apply these expressions
to take the limit of the lower bound on E[Yi0|Ui ∈ C01a(ε)] as ε → 0, and show it
approaches Y ; by a symmetric argument, the upper bound approaches Y .

First, note that E[Yi0|Ui ∈ C01a(ε)] must satisfy

E[Yi0|Ui ∈ C01a(ε)] ≥ max

{
Y ,

E[Yi0|Ui ∈ C01a(ε) ∪ C01b(ε)]− P[Ui∈C01b(ε)]
P[Ui∈C01a(ε)∪C01b(ε)]

Y

P[Ui∈C01a(ε)]
P[Ui∈C01a(ε)∪C01b(ε)]

}
(A16)

Equation A16 combines two inequalities. First, E[Yi0|Ui ∈ C01a(ε)] must satisfy the
assumed lower bound (Y ) in Assumption Y.2. Second, E[Yi0|Ui ∈ C01a(ε)] must be
larger than the smallest possible value consistent with the identified potential outcome
mean E[Yi0|Ui ∈ C01a(ε) ∪ C01b(ε)], which is binding when E[Yi0|Ui ∈ C01b(ε)] takes
on the assumed upper bound (Y ) in Assumption Y.2.

Second, I apply the approximations

f(u) = f(0) + o(1)

MTR0(u)f(u) = MTR0(0)f(0) + o(1)

which are valid by continuity of f(u) > 0 (Assumption TRUM.2), and of MTR0(u)

(Assumption Y.1), respectively. I apply these approximations to P[Ui ∈ C01a(ε)],
yielding

P[Ui ∈ C01a(ε)] =

∫ ε

0

∫ ua+ε

ε

f(u)du

=

∫ ε

0

∫ ua+ε

ε

(f(0) + o(1)) du

=
ε2

2
f(0) + o(ε2)

13



appendix – for online publication

Identical steps imply

P[Ui ∈ C01b(ε)] =
ε2

2
f(0) + o(ε2)

P[Ui ∈ C01a(ε) ∪ C01b(ε)] = ε2f(0) + o(ε2)

P[Ui ∈ C01a(ε) ∪ C01b(ε)]E[Yi0|Ui ∈ C01a(ε) ∪ C01b(ε)] = ε2MTR0(0)f(0) + o(ε2)

Third, substituting these expressions, applying o(ε2)/ε2 = o(1), and substituting
MTR0(0) =

1
2
(Y + Y ) (as assumed in Proposition 3) into Equation A16 yields

E[Yi0|Ui ∈ C01a(ε)] ≥ max

Y ,
ε2MTR0(0)f(0) + o(ε2)−

(
ε2

2
f(0) + o(ε2)

)
Y

ε2

2
f(0) + o(ε2)


= max

{
Y ,

2MTR0(0) + o(1)− Y

1 + o(1)

}
= max

{
Y ,

Y + o(1)

1 + o(1)

}
which approaches Y as ε → 0.

A.7 Proposition 4

Proof. First, note that Assumption MLATR is equivalent to, for d ∈ {0, a, b},

E[Yid|Ui ∈ Cxyk(ε)]− E[Yid|Ui ∈ Cx+wa,y+wb,k(ε)] ≥ 0

⇔ E[Yid|Ui ∈ Cx′y′k(ε)]− E[Yid|Ui ∈ Cx′+wa,y′+wb,k(ε)] ≥ 0

Further note that

E[Yid|Ui ∈ Cxyk(ε)]− E[Yid|Ui ∈ Cx+wa,y+wb,k(ε)] ≥ 0

⇔ E[Yid|Ui ∈ Cxyk(ε)]
P[Ui ∈ Cx+wa,y+wb,k(ε)]−P[Ui ∈ Cxyk(ε)]

ε3

+
E[Yid|Ui ∈ Cxyk(ε)]P[Ui ∈ Cxyk(ε)]− E[Yid|Ui ∈ Cx+wa,y+wb,k(ε)]P[Ui ∈ Cx+wa,y+wb,k(ε)]

ε3
≥ 0

14
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Taking limits of the second inequality yields, in the limit as ε → 0

E[Yid|Ui ∈ Cxyk(ε)]− E[Yid|Ui ∈ Cx+wa,y+wb,k(ε)] ≥ 0

⇔ −1

2
f(0)

(
wa

∂MTRd(0)

∂ua

+ wb
∂MTRd(0)

∂ub

)
≥ 0

excluding the case where wa
∂MTRd(0)

∂ua
+ wb

∂MTRd(0)
∂ub

= 0.
The same limiting equivalence holds for (x′, y′) in place of (x, y), and therefore,

in the limit as ε → 0, Assumption MLATR holds.

A.8 Proposition 6

Proof. I proceed in two steps. First, I show that E[Yi0|Ui ∈ C01a(ε) ∪ C01b(ε)] ap-
proaches MTR0(0) as ε → 0; an identical argument applies to E[Yi0|Ui ∈ C10a(ε) ∪
C10b(ε)]. Second, I show that P[Ui∈C01a(ε)]

P[Ui∈C01a(ε)∪C10b(ε)]
approaches 1

2
as ε → 0; an identical

argument applies to P[Ui∈C01a(ε)]
P[Ui∈C01a(ε)∪C01b(ε)]

and P[Ui∈C10b(ε)]
P[Ui∈C10a(ε)∪C10b(ε)]

. It immediately follows
that both bounds in Equation 11 approach MTR0(0) as ε → 0. An identical argument
applies to Equations 12 and 13, and Proposition 6 holds.

First, note that

min
u∈C01a(ε)∪C01b(ε)

MTR0(u) ≤ E[Yi0|Ui ∈ C01a(ε) ∪ C01b(ε)] ≤ max
u∈C01a(ε)∪C01b(ε)

MTR0(u)

By continuity of MTR0(u) (Assumption Y.1),

lim
ε→0

min
u∈C01a(ε)∪C01b(ε)

MTR0(u) = lim
ε→0

max
u∈C01a(ε)∪C01b(ε)

MTR0(u) = MTR0(0)

Therefore
lim
ε→0

E[Yi0|Ui ∈ C01a(ε) ∪ C01b(ε)] = MTR0(0)

Second, by continuity of f(u) (Assumption TRUM.2), and from Section A.6,

P[Ui ∈ C01a(ε)] =
ε2

2
f(0) + o(ε2)

Therefore

P[Ui ∈ C01a(ε)]

P[Ui ∈ C01a(ε) ∪ C10b(ε)]
=

ε2

2
f(0) + o(ε2)

ε2f(0) + o(ε2)
=

1

2

(
1 + o(1)

1 + o(1)

)
15
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Therefore
lim
ε→0

P[Ui ∈ C01a]

P[Ui ∈ C01a ∪ C10b]
=

1

2
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