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Abstract

When individuals self-select into multiple unordered treatments, additional
assumptions are needed to identify treatment effects with instrumental vari-
ables. Suppose each treatment is targeted by a single instrument, then the
following assumptions enabling identification of treatment effects are effec-
tively equivalent: no defiers, identical compliers, and an additive random utility
model of treatment selection. This equivalence extends approaches to identifi-
cation and falsification derived under each assumption, and suggests new ones:
no defiers is equivalent to a set of testable restrictions on choice probabili-
ties, and all treatment effects are identified for individuals indifferent between
control and all treatments.
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When individuals self-select into treatments, under what conditions are treatment
effects identified? With a single treatment, a weighted average of treatment effects
is identified under an economically interpretable “monotonicity” assumption on an
instrumental variable (Imbens & Angrist, 1994; Heckman & Vytlacil, 2005): increases
in the instrument induce some individuals to shift from treatment to control, but
do not induce any to shift from control to treatment. In contrast, with multiple
treatments, the widely applied result with a single treatment that two-stage least
squares estimates a local average treatment effect no longer holds, even when there is
at least one instrument per treatment — additional assumptions are then necessary
to identify treatment effects (Behaghel et al., 2013; Kirkeboen et al., 2016).

A growing set of assumptions have been proposed that enable identification of
treatment effects when individuals self-select into multiple treatments; while each set
of assumptions yields distinct approaches to identification of treatment effects, each
collapses to monotonicity when treatment is binary. A key source of this multiplicity is
that monotonicity encapsulates two distinct classes of assumptions that are equivalent
when treatment is binary, but must be combined with multiple treatments. The first
are targeting (Lee & Salanié, 2023) or partial monotonicity (Mogstad et al., 2021;
Mountjoy, 2022) assumptions, that restrict the sign of responses to changes in the
value of the instruments. The second are homogeneity assumptions, that restrict
heterogeneity across compliers to changes in the value of the instrument; these include
no defiers (Navjeevan & Pinto, 2022), identical compliers (Mountjoy, 2022), and an
additive random utility model of treatment selection (Lee & Salanié, 2018).

In this paper I establish an equivalence result, clarifying links across assumptions
enabling identification of treatment effects with multiple unordered treatments: when
each treatment is targeted by a single instrument, these three homogeneity assump-
tions are effectively equivalent. This equivalence result immediately enables results
or intuitions derived under one assumption to be applied under others.

In Section 1, I formalize these assumptions on selection of individuals into multiple
treatments. As in Mountjoy (2022), I maintain that responses to changes in the value
of the instruments satisfy unordered partial monotonicity (“UPM”), that each instru-
ment shifts agents towards the instrument’s associated choices and away from other
choices. I show this assumption is equivalent to assuming that individuals make util-
ity maximizing choices when selecting into treatment, and each instrument increases
individual utilities associated with its targeted choice, as if a price or characteristic
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of the targeted choice.
I then consider three additional assumptions that restrict the heterogeneity of

treatment responses to changes in the value of the instruments across individuals.
Existing work has developed approaches to identification of treatment effects and
falsification tests under each assumption.

• No defiers (“ND”) imposes a global notion of monotonicity: for any change
in the value of the instruments, no two individuals have opposing treatment
responses.

• Identical compliers (“IC”) imposes a marginal notion of monotonicity: the same
individuals are marginal between a pair of treatments, whether revealed by small
changes in either instrument targeting each treatment.1

• The Additive Random Utility Model (“ARUM”) imposes that agent utility is
additively separable in unobserved heterogeneity and the instrument.

In Section 2, I show that conditional on UPM, and additional technical assump-
tions, ND, IC, and ARUM are equivalent. This equivalence extends a result from
Vytlacil (2002), that ND and ARUM are equivalent when treatment is binary, to the
setting with multiple unordered treatments. The proof builds closely on Mogstad
et al. (2021), who show that with multiple instruments and binary treatment, ND is
effectively equivalent to homogeneous instrument sensitivity. Under additional techni-
cal assumptions, homogeneous instrument sensitivity is equivalent to ARUM. I apply
their approach and extend it to IC — ND and IC are equivalent to homogeneous
instrument sensitivity, and therefore ARUM.

In Section 3, I apply this equivalence to results on identification of treatment
effects and falsification tests. Immediately, results under UPM and ARUM (Lee &
Salanié, 2018; Allen & Rehbeck, 2019; Bhattacharya, 2023) and results under UPM
and IC (Mountjoy, 2022) apply under UPM and either ND, IC, or ARUM.

I then leverage insights from this equivalence to derive a novel identification and
falsifiability result. First, the average effect of any treatment relative to any other,
among individuals indifferent between all treatments, is identified with local variation

1This assumption is closely related to the assumption of comparable compliers from Mountjoy
(2022), which imposes the weaker restriction that individuals with the same average potential out-
comes are marginal. I discuss the distinction between assumptions on selection into treatment, on
which this paper focuses, and assumptions on outcomes, which are often sufficient for identification
and need not imply assumptions on selection, in Section 1.2.
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in the instruments. Second, conditional on UPM, ND is equivalent to a set of testable
restrictions on choice probabilities.

1 Modeling selection into multivalued treatment

This section describes a model of selection into multivalued treatment and associ-
ated assumptions. Section 1.1 describes the selection framework with two treatments
and two instruments. Section 1.2 describes and interprets potential additional as-
sumptions related to monotonicity on the selection model that enable identification
of treatment effects. Section 1.3 interprets the relationship between these and other
assumptions on the selection model through their restrictions on admissible treatment
response graphs. Section 1.4 develops additional technical assumptions.

1.1 Selection into multivalued treatment

Let I denote the population of individuals i ∈ I, with an associated probability mea-
sure P and expectation E. Let Di(z) ∈ {0, 2, 4} denote the potential treatment status
of individual i if their instrument Zi ≡ (Zi2, Zi4) were set to z ≡ (z2, z4), where Zi and
z have support on a 2-dimensional interval Z ⊆ R2. Further let Did(z) ≡ 1 [Di(z) = d]

indicate that individual i would have treatment status d if their instrument were set
to z.

This notation builds closely on Mountjoy (2022), and I use their context through-
out this section for concreteness. In their empirical setting, the values of the treatment
status 0, 2, and 4 correspond to not attending college, initially attending two-year
college, and initially attending four-year college, respectively. In their application,
the values of the instrument z2 and z4 correspond to distance to the nearest two-year
college and distance to the nearest four-year college, respectively.

1.2 Monotonicity

With a binary treatment and scalar instrument, the assumption that treatment status
is increasing in the value of the instrument (“monotonicity”, in Imbens & Angrist,
1994) implies no defiers; in contrast, with multiple unordered treatments, common
restrictions on the sign and heterogeneity of treatment responses are no longer nested.
Section 1.2.1 describes an assumption that restricts the sign of treatment responses
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to changes in the value of each instrument, unordered partial monotonicity, and links
it to a random utility model. Section 1.2.2 describes assumptions that restrict het-
erogeneity in responses across individuals: identical compliers, no defiers, and an
additive random utility model.

1.2.1 Unordered partial monotonicity and targeting

In many applications, the instrument z acts similarly to (or is) the vector of prices of
the treatments. When the price of a given treatment increases, the canonical random
utility model restricts the potential treatment responses: marginal individuals shift
out of the now more expensive treatment into other treatments, but no individuals are
induced to shift between treatments that did not experience price changes. Mountjoy
(2022) formalizes this assumption, which I restate with the notation in Section 1.1.

Assumption UPM (Unordered Partial Monotonicity). For all i ∈ I, and (z2, z4), (z
′
2, z4) ∈

Z with z′2 < z2,

Di2(z
′
2, z4) ≥ Di2(z2, z4), Di0(z

′
2, z4) ≤ Di0(z2, z4), Di4(z

′
2, z4) ≤ Di4(z2, z4)

For all i ∈ I, and (z2, z4), (z2, z
′
4) ∈ Z with z′4 < z4,

Di4(z2, z
′
4) ≥ Di4(z2, z4), Di0(z2, z

′
4) ≤ Di0(z2, z4), Di2(z2, z

′
4) ≤ Di2(z2, z4)

In the context of college attendance choices in Mountjoy (2022), Assumption UPM
imposes the following restrictions on treatment status:

• Decreasing the distance to the nearest two-year college causes individuals to
shift from not attending college to two-year college, and to shift from attending
four-year college to attending two-year college. It does not cause any individuals
to stop attending two-year college, or to shift between not attending college and
four-year college.

• Similarly, decreasing the distance to the nearest four-year college causes indi-
viduals to shift from not attending college to four-year college, and to shift from
attending two-year college to attending four-year college. It does not cause any
individuals to stop attending four-year college, or to shift between not attending
college and two-year college.
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These restrictions are motivated by individuals making their utility-maximizing
choice of college attendance, with the utility from attending a college decreasing in the
distance to the college. Through the lens of the random utility model, Assumption
UPM imposes restrictions on how instruments (distances to the nearest two-year
college and four-year college) can affect individuals’ utilities, in the same manner as
the “targeting” assumption proposed by Lee & Salanié (2023).

Assumption TRUM (Targeted Random Utility Model). For all i ∈ I, treatment
status Di(z) satisfies

Di(z) = arg max
d∈{0,2,4}

Vid(z) (1)

for all z ∈ Z. Further, Vi0(z) = 0, Vi2(z) = Ui2 − µi2(z2), and Vi4(z) = Ui4 − µi4(z4),
where µi2 and µi4 are increasing functions of z2 and z4, respectively.

Proposition 1. Assumptions UPM and TRUM are equivalent.

Proof. I establish equivalence by showing that Assumption TRUM implies Assump-
tion UPM, and then that any deviation from Assumption TRUM implies a violation
of Assumption UPM.

Assumption TRUM ⇒ Assumption UPM Take any (z2, z4), (z
′
2, z4) ∈ Z with

z′2 < z2. Let z ≡ (z2, z4) and z′ ≡ (z′2, z4). By Assumption TRUM, for all i ∈ I,
Vi0(z) = Vi0(z

′), Vi2(z) ≤ Vi2(z
′), and Vi4(z) = Vi4(z

′). As Equation 1 holds, for all
i ∈ I, Di2(z

′) ≥ Di2(z), Di0(z
′) ≤ Di0(z), and Di4(z

′) ≤ Di4(z).
Take any (z2, z4), (z2, z

′
4) ∈ Z with z′4 < z4. Let z ≡ (z2, z4) and z′ ≡ (z2, z

′
4).

By Assumption TRUM, for all i ∈ I, Vi0(z) = Vi0(z
′), Vi2(z) = Vi2(z

′), and Vi4(z) ≤
Vi4(z

′). As Equation 1 holds, for all i ∈ I, Di4(z
′) ≥ Di4(z), Di0(z

′) ≤ Di0(z), and
Di2(z

′) ≤ Di2(z).
Assumption UPM therefore holds.

¬Assumption TRUM ⇒ ¬Assumption UPM Assumption TRUM implies a
system of inequalities characterize treatment choice:

Di(z) = 0 ⇔ Ui2 − µi2(z2) ≤ 0 & Ui4 − µi4(z4) ≤ 0

Di(z) = 2 ⇔ Ui2 − µi2(z2) ≥ 0 & Ui2 − µi2(z2)− Ui4 − µi4(z4) ≥ 0

Di(z) = 4 ⇔ Ui4 − µi4(z4) ≥ 0 & Ui2 − µi2(z2)− Ui4 − µi4(z4) ≤ 0
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An example solution to this system of inequalities is plotted in Figure 1; consider the
possible deviations from Assumption TRUM, labeled A, B, and C.2

Figure 1: Unordered partial monotonicity implies a targeted random utility model

Deviation A implies there exists z2, z4, z
′
4 with z′4 < z4 such that Di(z2, z4) = 2

and Di(z2, z
′
4) = 0, contradicting Assumption UPM.

Deviation B implies there exists z2, z
′
2, z4 with z′2 < z2 such that Di(z2, z4) = 0

and Di(z
′
2, z4) = 4, contradicting Assumption UPM.

Deviation C implies there exists z2, z
′
2, z4 with z′2 < z2 such that Di(z2, z4) = 2

and Di(z
′
2, z4) = 4, contradicting Assumption UPM.

1.2.2 Identical compliers, no defiers, and additive random utility

Conditional on Assumption UPM, which restricts the sign of treatment responses to
changes in the value of the instrument, I consider three assumptions that restrict the
heterogeneity of treatment responses.

Assumption IC (Identical Compliers). For all (z2, z4) ∈ Z, I ⊆ I

lim
z′2↑z2

P [i ∈ I|Di(z
′
2, z4) = 2, Di(z2, z4) = 4] = lim

z′4↓z4
P [i ∈ I|Di(z2, z

′
4) = 2, Di(z2, z4) = 4]

2I present an alternative non-graphical proof that Assumption UPM implies Assumption TRUM
in Appendix.
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Assumption IC imposes “marginal monotonicity”: the same individuals are marginal
between treatment statuses 2 and 4, whether revealed by small changes in z2 or z4.
Assumption IC is closely related to “comparable compliers” from Mountjoy (2022);
rather than assuming that the average potential outcomes of individuals induced to
shift from treatment status 2 to treatment status 4 by small increases in z2 and small
decreases in z4 are the same, I assume that the average types of these individuals are
the same. Comparable types is a strictly stronger assumption, as, for example, com-
parable potential outcomes is satisfied whenever selection is independent of potential
outcomes. I focus on comparable types to separate assumptions on selection from
assumptions on potential outcomes conditional on Di(·).

Assumption ND (No Defiers). For all z, z′ ∈ Z, and (d, d′) ∈ {0, 2, 4} with d 6= d′

P [Di(z) = d,Di(z
′) = d′] = 0 or P [Di(z) = d′, Di(z

′) = d] = 0

Assumption ND imposes “global monotonicity”: for any change in the value of
the instruments, no two individuals have opposing treatment responses. Navjeevan &
Pinto (2022) discuss identification under Assumption ND with discrete instruments.

Assumption ARUM (Additive Random Utility Model). For all i ∈ I and z ∈ Z,
treatment status satisfies Equation 1 where Vi0(z) = 0, Vi2(z) = Ui2 + µ2(z), Vi4(z) =

Ui4 + µ4(z).

Assumption ARUM imposes strong restrictions on heterogeneity of treatment re-
sponses: for any change in the value of the instruments, all individuals agree on the
changes in relative utility across treatments. Lee & Salanié (2018) discuss identifica-
tion of treatment effects under Assumption ARUM.

Assumptions IC, ND, and ARUM are redundant conditional on Assumption UPM
for a binary treatment and instrument. In this case, Assumption UPM corresponds
to the monotonicity assumption in Imbens & Angrist (1994), and increases in the
binary instrument must shift agents away from control and into treatment. Without
multivalued treatment, Assumption IC holds vacuously, Assumption ND is implied
by monotonicity, and Vytlacil (2002) showed that Assumption ARUM is implied by
monotonicity. However, with multiple treatments and multiple instruments, each of
these assumptions puts additional restrictions on choices conditional on Assumption
UPM.

8



1.3 Relationships across assumptions on selection

Assumption ND can be equivalently stated in terms of the permissible directed graphs
of flows between treatments in response to a change in the value of the instrument.
Define the “treatment response graph” G(z,z′) for a change in the value of the instru-
ment from z to z′, with element (d, d′) ∈ {0, 2, 4}2 equal to G

(z,z′)
(d,d′) by

G
(z,z′)
(d,d′) ≡ 1{d 6= d′}1{P[Di(z) = d,Di(z

′) = d′] > 0} (2)

The element (d, d′) of the treatment response graph G(z,z′) is 1 if the change of the
instrument z → z′ induces individuals to shift d → d′, and 0 otherwise.3

Assumption ND can be equivalently stated using the treatment response graph as
follows: for any d, d′ ∈ {0, 2, 4}, either G

(z,z′)
(d,d′) = 0 or G

(z,z′)
(d′,d) = 0. That is, there is no

change in the value of the instrument from z to z′ that both induces individuals to
shift d → d′ and also d′ → d.

Figure 2 plots the 6 unique treatment response graphs (up to permutations of
nodes) that are consistent with no defiers with 3 treatment values. Conditional on
Assumption ND, additional assumptions place additional restrictions on the set of
permissible treatment response graphs. I discuss the restrictions placed by 3 addi-
tional assumptions: no cycles, unordered monotonicity (Heckman & Pinto, 2018),
and Assumption UPM.

First, “no cycles” (“NC”) imposes that there are no cycles in the treatment re-
sponse graph G(z,z′). This is a stronger assumption than Assumption ND – it rules
out the case, for example, where a change in the value of the instruments induces the
treatment flows {0 → 2, 2 → 4, 4 → 0}. Interpreting flows of individuals across treat-
ments as a revealed preference, a cycle implies a form of preference heterogeneity:
the change in the value of the instruments must have strictly increased the relative
value of 2 to 0 for individuals shifting 0 → 2, of 4 to 2 for agents shifting 2 → 4,
and of 0 to 4 for agents shifting 4 → 0. These changes in relative values are not si-
multaneously possible for a single agent. Cycles challenge identification of treatment

3The admissible treatment response graphs discussed here are closely related to admissible binary
response matrices under unordered monotonicity in Heckman & Pinto (2018) and under minimal
monotonicity (equivalent to no defiers) in Navjeevan & Pinto (2022); binary response matrices carry
additional information on restrictions to responses across multiple values of an instrument, which
Heckman & Pinto (2018) and Navjeevan & Pinto (2022) use to establish results on identification
with discrete variation in instruments.
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Figure 2: Feasible treatment response graphs conditional on no defiers

Notes: The set of unique feasible treatment response graphs G(z,z′), defined in Equation 2, up to
permutations of nodes possible under Assumption ND are presented in this figure. The subset of
these graphs that are feasible when either no cycles, unordered monotonicity, or Assumption UPM
is also imposed are included in the associated labeled circle of the assumption.

effects in a manner similar to defiance: a cycle implies that unobserved flows of indi-
viduals across treatments are possible without any corresponding change in observed
treatment probabilities.

Second, “unordered monotonicity” (“UM”), analyzed by Heckman & Pinto (2018),
imposes that there is no treatment that experiences both individuals shifting into that
treatment and individuals shifting out of that treatment in response to a change in the
value of the instruments.4 That is, for all d ∈ {0, 2, 4}, either

∑
d′∈{0,2,4}G

(z,z′)
(d,d′) = 0 or

4Other work has analyzed assumptions that imply unordered monotonicity (Behaghel et al.,
2013; Bhuller & Sigstad, 2023), and are therefore distinct from unordered partial monotonicity.
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∑
d′∈{0,2,4}G

(z,z′)
(d′,d) = 0. UM strengthens no cycles, by effectively imposing that there

are two tiers of treatments for any change in the instruments: those that receive
flows of individuals from other treatments, and those that send flows of individuals
to other treatments. It therefore rules out two sets of treatment response graphs
consistent with no cycles which imply three tiers of treatments: {0 → 2, 2 → 4}, and
{0 → 2, 2 → 4, 0 → 4}.

Third, Assumption UPM, analyzed by Mountjoy (2022), imposes that each instru-
ment induces positive flows into its associated treatment and out of other treatments,
but not between other treatments.5 Assumption UPM implies, but is not implied
by, additional restrictions on the set of permissible treatment response graphs. Con-
sider as an example reducing both z2 and z4. Reducing z2 must induce agents to
shift 0 → 2 and 4 → 2, while reducing z4 must induce agents to shift 2 → 4 and
0 → 4; reducing z2 and then z4 must shift agents from 0 → 4, while reducing z4 and
then z2 must shift agents from 0 → 2. When combined with no defiers, only three
sets of flows are therefore possible from reducing both z2 and z4: {0 → 2, 0 → 4},
{0 → 2, 0 → 4, 2 → 4}, and {0 → 2, 0 → 4, 4 → 2}. Applying the above reasoning to
each possible change in the value of the instrument, Assumption ND and Assumption
UPM jointly strengthen no cycles by implying transitivity of treatment flows: if a
change in the value of the instruments shifts individuals 2 → 4 (i.e., strict revealed
preference for 4 over 2), and not from 2 → 0 (i.e., weak revealed preference for 2 over
0), then it must also shift individuals from 0 → 4 (i.e., strict revealed preference for
4 over 0).

That Assumptions UPM and ND jointly imply transitivity of treatment flows sug-
gests an equivalence with Assumption ARUM: both transitivity and the “increasing
differences” property of the additive random utility model (Lee & Salanié, 2023) are
equivalent to the statement that any change in the value of the instrument z → z′

induces a weak ordering of treatments through the associated treatment response
graph G(z,z′).

5While Assumption UPM only imposes that each instrument induces weakly positive flows into
its associated treatment and out of other treatments, the version of Assumption UPM analyzed by
Mountjoy (2022), or Assumption UPM coupled with Assumptions TRUM.1, TRUM.2, and TRUM.3,
imposes strictly positive flows. In the analysis in this section, I implicitly assume strictly positive
flows.
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1.4 Technical assumptions on selection

I consider the following additional technical assumptions on the targeted random
utility model in Assumption TRUM (equivalent to Assumption UPM).

Assumption TRUM.1. µi2(z2) and µi4(z4) are continuously differentiable functions
of z for all i ∈ I, (z2, z4) ∈ Z.

Assumption TRUM.2. (Ui2, Ui4) are continuously distributed with strictly positive
density on R2 conditional on (µi2, µi4).

Assumption TRUM.3. µ′
i2(z2) > 0 and µ′

i4(z4) > 0 for all i ∈ I, (z2, z4) ∈ Z.

I impose three additional technical restrictions on the targeted random utility
model. Assumption TRUM.1 imposes that utility is continuously differentiable in
the instrument. Assumption TRUM.2 ensures that unobserved heterogeneity is never
one-dimensional among marginal individuals; that is, for each “sensitivity” to the
instrument (µi2, µi4) and each value of the instrument z, there are positive densities of
individuals (Ui2, Ui4) who are indifferent between treatment statuses 0 and 2, between
0 and 4, between 2 and 4, and between 0, 2, and 4. Assumption TRUM.3 ensures
that all individuals are responsive to both instruments.

2 Equivalence across assumptions on selection

In this section, I show that Assumptions IC, ND, and ARUM are equivalent condi-
tional on Assumption UPM and Assumptions TRUM.1, TRUM.2, and TRUM.3. In
Section 2.1, I consider a selection model that deviates from Assumption ARUM by
introducing heterogeneous instrument sensitivity, and show it violates Assumptions
IC and ND. In Section 2.2, I show that Assumptions IC, ND, and ARUM are all
equivalent to homogeneous instrument sensitivity conditional on Assumption UPM
and Assumptions TRUM.1, TRUM.2, and TRUM.3.

2.1 An example with heterogeneous instrument sensitivity

Consider the following generalization (suggested by Mountjoy, 2022) of the additive
random utility model in Assumption ARUM that allows for heterogeneous instrument
sensitivity, while satisfying Assumption UPM.
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Vi0(z2, z4) = 0, Vi2(z2, z4) = Ui2 −Wiµ2(z2), Vi4(z2, z4) = Ui4 − µ4(z4) (3)

where Wi > 0 and takes on multiple values with positive probability. Wi parametrizes
individual i’s instrument sensitivity: individuals i with high Wi are relatively more
responsive to changes in z2 than changes in z4. Note that this example therefore also
does not satisfy Assumption ND: a discrete increase in both z2 and z4 could increase
the relative utility from treatment status 2 for agents with high Wi while decreasing
the relative utility for agents with low Wi, causing high Wi individuals to shift from
4 to 2 and low Wi individuals to shift from 2 to 4.

Proposition 2. Suppose Assumptions UPM, TRUM.1, TRUM.2, and TRUM.3 hold.
Then Equation 3 does not satisfy Assumption IC.

Proof. I begin by, to the left side of the equality in Assumption IC, sequentially
applying Bayes rule, substituting using Equation 3, and applying the law of iterated
expectations.

lim
z′
2↑z2

P [ i ∈ I|Di(z
′
2, z4) = 2, Di(z2, z4) = 4]

= P [i ∈ I]

(
lim
z′
2↑z2

P [Di(z
′
2, z4) = 2, Di(z2, z4) = 4| i ∈ I]

P [Di(z′2, z4) = 2, Di(z2, z4) = 4]

)
= P [i ∈ I]

(
lim
z′
2↑z2

P [Ui4 ≥ µ4(z4), Ui2 ∈ [Ui4 − µ4(z4) +Wiµ2(z
′
2), Ui4 − µ4(z4) +Wiµ2(z2)]| i ∈ I]

P [Ui4 ≥ µ4(z4), Ui2 ∈ [Ui4 − µ4(z4) +Wiµ2(z′2), Ui4 − µ4(z4) +Wiµ2(z2)]]

)
= P [i ∈ I]

(
lim
z′
2↑z2

E [P [Ui4 ≥ µ4(z4), Ui2 ∈ [Ui4 − µ4(z4) +Wiµ2(z
′
2), Ui4 − µ4(z4) +Wiµ2(z2)]| i ∈ I,Wi]]

E [P [Ui4 ≥ µ4(z4), Ui2 ∈ [Ui4 − µ4(z4) +Wiµ2(z′2), Ui4 − µ4(z4) +Wiµ2(z2)]|Wi]]

)
The numerator and the denominator of the expression inside the limit both converge

to zero; I therefore apply L’Hopital’s rule to evaluate the limit, replacing the numer-
ator and denominator with their derivative with respect to z′2 evaluated at z′2 = z2.
Letting f(u2, u4|w) denote the density of (Ui2, Ui4), evaluated at (u2, u4), conditional
on Wi = w, I note that

d

dz′2
P [Ui4 ≥ µ4(z4), Ui2 ∈ [Ui4 − µ4(z4) + wµ2(z2), Ui4 − µ4(z4) + wµ2(z

′
2)]|Wi = w]|z′

2=z2

=
d

dz′2

∫ ∞

µ4(z4)

∫ u4−µ4(z4)+wµ2(z
′
2)

u4−µ4(z4)+wµ2(z2)

f(u2, u4|w)du2du4

∣∣∣∣∣
z′
2=z2

= wµ′
2(z2)

∫ ∞

µ4(z4)

f(u4 − µ4(z4) + wµ2(z2), u4|w)du4

I apply the same steps to the numerator, and include i ∈ I in the conditional density
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f(u2, u4|i ∈ I, w) to denote the additional conditioning on i ∈ I. Substituting yields

lim
z′
2↑z2

P [ i ∈ I|Di(z
′
2, z4) = 2, Di(z2, z4) = 4]

= P [i ∈ I]
E
[
Wi

∫∞
µ4(z4)

f(u4 − µ4(z4) +Wiµ2(z2), u4|i ∈ I,Wi)du4

]
E
[
Wi

∫∞
µ4(z4)

f(u4 − µ4(z4) +Wiµ2(z2), u4|Wi)du4

] (4)

Applying the steps above to the right side of the equality in Assumption IC yields

lim
z′
4↓z4

P [ i ∈ I|Di(z2, z
′
4) = 2, Di(z2, z4) = 4]

= P [i ∈ I]
E
[∫∞

µ4(z4)
f(u4 − µ4(z4) +Wiµ2(z2), u4|i ∈ I,Wi)du4

]
E
[∫∞

µ4(z4)
f(u4 − µ4(z4) +Wiµ2(z2), u4|Wi)du4

] (5)

Equations 4 and 5 imply that the Assumption IC does not generically hold under
Equation 3; the limit as z′2 ↑ z2 weighs the density of marginal individuals with i ∈ I
proportionally to sensitivity to z2 (high Wi) while the limit as z′4 ↓ z4 does not.

When Wi is heterogeneous, Proposition 2 establishes that Equation 3 need not
satisfy any of Assumptions ARUM, ND, and IC. Alternatively, when Wi is constant,
Equation 3 satisfies Assumptions ARUM, ND, and IC. This sharpness suggests the
equivalence of these three assumptions.

2.2 Proof of equivalence

Proposition 3. Suppose Assumptions UPM, TRUM.1, TRUM.2, and TRUM.3 hold.
Then Assumptions IC, ND, and ARUM are equivalent.

Proof. To begin, I note that Assumption ARUM implies Assumption IC (as shown
by Mountjoy, 2022) and Assumption ND (as shown by Lee & Salanié, 2023). Below, I
show that either Assumption IC or Assumption ND implies homogeneous instrument
sensitivity, which I show implies Assumption ARUM. Therefore, Assumptions IC,
ND, and ARUM are equivalent.

The intuition underlying the result that either Assumption IC or Assumption
ND is equivalent to homogeneous instrument sensitivity, and therefore Assumption
ARUM, is present in Figure 3. Figure 3 builds closely on Mogstad et al. (2021), ap-
plying their Figure 2 (and associated logic) to the setting with multivalued treatment
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Figure 3: Identical compliers or no defiers implies homogeneous instrument sensitivity

Notes: Two example indifference curves, corresponding to the set of values z for which individuals
of type-j and type-k are indifferent between treatment statuses 2 and 4, are plotted in this graph,
which is centered at their point of intersection. Values of the treatment status of type-j and type-k
individuals (Dj , Dk) which contradict Assumption ND are plotted. Indifference curves through
alternative values of z – with an increase in z2 and with a decrease in z4 – are plotted for both
individuals of type-µj and type-µk, which contradict Assumption IC.

and extending it from Assumption ND to Assumption IC. First, Figure 3 presents
an example with two defiers j and k for a given change in the instrument. Under
Assumption UPM, the implied sets of (z2, z4) for which defiers j and k are indiffer-
ent between treatment statuses must intersect, that is j and k have heterogeneous
instrument sensitivity. One can similarly identify defiers from j-type and k-type indi-
viduals who differ in their instrument sensitivity. Second, Figure 3 shows the effects
of a small increase in z2 and a small decrease in z4 on individuals with instrument
sensitivity characterized by (µj2, µj4) and (µk2, µk4); more of the µk-type individuals
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shift treatment status in response to the increase in z2, while more of the µj-type
individuals shift treatment status in response to the decrease in z4.

Homogeneous instrument sensitivity ⇒ Assumption ARUM I define homo-
geneous instrument sensitivity as

µ′
j2(z2)

µ′
k2(z2)

=
µ′
j4(z4)

µ′
k4(z4)

∀j, k ∈ I, (z2, z4) ∈ Z

These ratios are well defined under Assumption TRUM.3. As Z is a 2-dimensional
interval, if (z′2, z′4) ∈ Z then (z2, z

′
4), (z

′
2, z4) ∈ Z, and the above equality implies

µ′
j2(z2)

µ′
k2(z2)

=
µ′
j2(z

′
2)

µ′
k2(z

′
2)

=
µ′
j4(z4)

µ′
k4(z4)

=
µ′
j4(z

′
4)

µ′
k4(z

′
4)

∀j, k ∈ I, (z2, z4), (z′2, z′4) ∈ Z

Fix any ` ∈ I. By continuous differentiability of µi2(z2) and µi4(z4) by Assump-
tion TRUM.1, rescaling Vid(z) implied by Assumption UPM in Proposition 1 by the
i-specific constant µ′

`4(z4)

µ′
i4(z4)

=
µ′
`2(z2)

µ′
i2(z2)

yields the additive random utility model in As-
sumption ARUM with µ2(z) = −µ`2(z2) and µ4(z) = −µ`4(z4).

Assumption IC ⇒ Homogeneous instrument sensitivity I apply the steps in
the proof of Proposition 2, but conditioning on (µi2, µi4) instead of Wi. This yields

lim
z′2↑z2

P [i ∈ I|Di(z
′
2, z4) = 2, Di(z2, z4) = 4]

= P [i ∈ I]
E
[
µ′
i2(z2)

∫∞
µi4(z4)

f(u4 − µi4(z4) + µi2(z2), u4|i ∈ I, µi2, µi4)du4

]
E
[
µ′
i2(z2)

∫∞
µi4(z4)

f(u4 − µi4(z4) + µi2(z2), u4|µi2, µi4)du4

] (6)

lim
z′4↓z4

P [i ∈ I|Di(z2, z
′
4) = 2, Di(z2, z4) = 4]

= P [i ∈ I]
E
[
µ′
i4(z4)

∫∞
µi4(z4)

f(u4 − µi4(z4) + µi2(z2), u4|i ∈ I, µi2, µi4)du4

]
E
[
µ′
i4(z4)

∫∞
µi4(z4)

f(u4 − µi4(z4) + µi2(z2), u4|µi2, µi4)du4

] (7)

This derivation requires Assumption TRUM.1 (for differentiability of µi2(z2) and
µi4(z4)) and Assumption TRUM.2 (for the application of limits and for conditional
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densities to be well-defined). Assumption IC implies Equations 6 and 7 are equal;
these equations are integrals of the density of “marginal” individuals, with “marginal”
individual i weighted by µ′

i2(z2) and µ′
i4(z4). Equality for all possible I ⊆ I and

(z2, z4) ∈ Z requires these weighting schemes are identical, and therefore µ′
j2(z2)

µ′
j4(z4)

=

µ′
k2(z2)

µ′
k4(z4)

for all j, k ∈ I, (z2, z4) ∈ Z. This is equivalent to homogeneous instrument
sensitivity.

Assumption ND ⇒ Homogeneous instrument sensitivity By Assumptions
TRUM.1, TRUM.2, and TRUM.3, for each type (µi2, µi4) there are a positive density
of marginal individuals at any value of the instrument (z2, z4). Assumption TRUM.1
holds, and Proposition 2 of Mogstad et al. (2021) therefore implies that

µ′
j2(z2)µ

′
k4(z4) = µ′

k2(z2)µ
′
j4(z4)

For all (j, k) ∈ I, (z2, z4) ∈ Z. By Assumption TRUM.2, this is equivalent to
homogeneous instrument sensitivity.

3 Identification and assumptions on selection

The conditional equivalence of Assumptions IC, ND, and ARUM immediately implies
that any results derived under one of these assumptions immediately hold under the
others. I discuss implications of this equivalence below for identification in Section
3.1 and for falsifiability in Section 3.2.

3.1 Identification and assumptions on selection

I summarize two distinct approaches to local identification of treatment effects: one
based on Assumption IC developed by Mountjoy (2022), and one I derive from As-
sumption ARUM.

I apply notation from Assumption ARUM, with heterogeneity in Di(z) fully char-
acterized by (Ui2, Ui4). I let Yid be the outcome of individual i under treatment
status d, such that the observed outcome Yi(Zi) ≡

∑
d∈{0,2,4} 1{Di(Zi) = d}Yid. The

econometrician observes (Yi(Zi), Di(Zi), Zi) for each individual i ∈ I.
I additionally make the following independence assumption.
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Assumption IE (Independence and Exclusion). Zi ⊥ (Yi0, Yi2, Yi4, Ui2, Ui4)

Assumption IE implies that the assigned value of the instrument Zi is independent
of potential outcomes and selection into treatment.

Identification derived under Assumption IC I restate Equation 14 of Moun-
tjoy (2022) in Equation 8; it establishes that the average potential outcome under
treatment statuses 2 among individuals indifferent between treatment statuses 2 and
4 is identified under Assumptions UPM, IC, and IE.

E [Yi2|Ui2 − µ2(z2) = Ui4 − µ4(z4) > 0] =
d

dz4
E [Yi(Zi)Di2(Zi)|Zi = (z2, z4)]
d

dz4
E [Di2(Zi)|Zi = (z2, z4)]

(8)

Roughly, any increase in treatment status 2 caused by an increase in z4 is from
individuals who are indifferent between treatment status 2 and treatment status
4. Therefore, the excess mass of outcome among individuals with treatment sta-
tus 2 must be from those marginal compliers, and the average outcome among those
marginal compliers from treatment status 2 to treatment status 4 is identified.

Mountjoy (2022) shows that average potential outcomes under alternative treat-
ment statuses d, among individuals indifferent between treatment statuses d and
d′ 6= d, are identified using a related approach; the average treatment effect for indi-
viduals indifferent between any pair of treatments is therefore identified.

Identification derived under Assumption ARUM Under Assumption ARUM,
other conditional expectations are locally identified. In Equations 9 and 10, I establish
identification of the average potential outcome under treatment status 2 among in-
dividuals indifferent between all three treatment statuses, under Assumptions UPM,
ARUM, and IE. Let Ui = µ(z) denote that (Ui2, Ui4) = (µ2(z2), µ4(z4)), that is that
individual i is indifferent between all three treatment statuses; then,

E [Yi2|Ui = µ(z)] =

(
d2

dz24
+

µ′
4(z4)

µ′
2(z2)

d2

dz2dz4

)
E [Yi(Zi)Di2(Zi)|Zi = (z2, z4)](

d2

dz24
+

µ′
4(z4)

µ′
2(z2)

d2

dz2dz4

)
E [Di2(Zi)|Zi = (z2, z4)]

(9)

µ′
4(z4)

µ′
2(z2)

=
d

dz4
E [Di2(Zi)|Zi = (z2, z4)]

d
dz2

E [Di4(Zi)|Zi = (z2, z4)]
(10)
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While Equation 9 is a direct application of Theorem 3.1 of Lee & Salanié (2018),
Lee & Salanié (2018) note that there is not generic guidance for local identification of
utility indices. Equation 10 was derived by Allen & Rehbeck (2019) and Bhattacharya
(2023), who establish local identification of utility indices up to location and scale
normalizations under Assumptions UPM, ARUM, and IE.

Equation 10 implies that relative instrument sensitivity is identified. To see this,
first note that the mass of compliers from treatment status 4 to treatment status 2
caused by a small decrease in z2 is proportional to the density of individuals indifferent
between treatment status 2 and 4 times instrument sensitivity µ′

2(z2). Similarly, the
mass of compliers from treatment status 2 to treatment status 4 caused by a small
decrease in z4 is proportional to the same density of indifferent individuals times
instrument sensitivity µ′

4(z4); relative instrument sensitivity µ′
4(z4)

µ′
2(z2)

is therefore equal
to this ratio of complier densities.

Once relative instrument sensitivities are identified, Equation 9 implies the mass
of individuals who are indifferent between all three treatment statuses can be iso-
lated, as presented in Figure 4a. Increasing z4 pushes individuals indifferent between
treatment status 2 and 4 into treatment status 2, decreasing equally both µ2(z2) and
µ4(z4) pushes individuals indifferent between treatment status 2 and 0 into treat-
ment status 2, and doing both of these also pushes individuals indifferent between all
three treatment statuses into treatment status 2; this suggests the ratio of the “local
difference-in-differences” in Equation 9.

The average potential outcome under treatment 0 or treatment 4 among individ-
uals indifferent between all three treatments is identified in a similar manner to the
average potential outcome under treatment 2, respectively presented in Figures 4b
and 4c. Importantly, this implies local identification of the effect of both treatment 2
and treatment 4 for a single group of individuals, those indifferent between all three
treatment statuses.

3.2 Tests of assumptions on selection

Tests derived under Assumption IC Mountjoy (2022) proposes a test of As-
sumption IC: average characteristics of individuals induced to shift from treatment 2
to treatment 4 in response to a decrease in z4 and individuals induced to shift from
treatment 4 to treatment 2 in response to a decrease in z2 are the same.
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Figure 4: Local difference-in-differences identifies treatment effects for individuals
indifferent across all treatment statuses

(a) Identification of E [Yi2|Ui = µ(z)]

(b) Identification of E [Yi0|Ui = µ(z)] (c) Identification of E [Yi4|Ui = µ(z)]

Notes: The set of individuals Ui with treatment status 0, 2, and 4 under small changes in the value
of the instruments z are plotted in each panel of this Figure. Shaded regions in panels (a), (b), and
(c) correspond to changes in the set of individuals with treatment status 2, 0, and 4, respectively,
under each of two possible changes in the values of the instruments or both.
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Tests derived under Assumption ND Many tests of Assumption ND have been
developed in the context of testing monotonicity with a binary instrument (Heckman
& Vytlacil, 2005; Kitagawa, 2015; Rose & Shem-Tov, 2023). In general, these tests
build on the following intuition: if a change in the value of the instrument z →
z′ induces individuals to shift into treatment d, but not out of treatment d, then
the probability of observing individuals who both adopt treatment d and have any
characteristic or outcome should increase. Otherwise, either some individuals must
have shifted out of treatment d, or the instrument must have changed individuals’
outcomes without changing their treatment status (a violation of Assumption IE).

Tests derived under Assumption ARUM Allen & Rehbeck (2019) shows that
Assumption ARUM implies Equation 10 holding for all z ∈ Z, while Bhattacharya
(2023) further establishes equivalence. This implies a testable restriction on the
impacts of the instruments on treatment probabilities at any set of instrument values
{(z2, z4), (z2, z′4), (z′2, z4), (z′2, z′4)}.

The equivalence of Assumptions ND and ARUM implies that Equation 10 is a
testable restriction of Assumption ND on the impacts of the instruments on treatment
probabilities conditional on Assumption UPM. The equivalence of Equation 10 and
Assumption ARUM conditional on Assumption UPM established in Bhattacharya
(2023) further implies that Equation 10 is the only testable restriction of Assumptions
ND and IC on treatment probabilities conditional on Assumption UPM.

This testable restriction of ARUM contrasts with the tests of Assumption ND
described above, which make use of observed outcomes or exogenous characteristics.
The existence of this test is perhaps surprising, as Assumption ND is not testable from
choice probabilities alone with a binary instrument, and highlights the identifying
power of Assumption UPM.

4 Conclusion

Identification of effects of multiple treatments with instrumental variables brings chal-
lenges not present in the case of a binary treatment (Imbens & Angrist, 1994): mono-
tonicity and instrument independence and exclusion are no longer sufficient to identify
even average flows of individuals between treatments. Recent work has derived iden-
tification of treatment effects under parsimonious and testable generalizations of the
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monotonicity assumption on choice behavior: unordered partial monotonicity and
either identical compliers (Mountjoy, 2022) or an additive random utility model (Lee
& Salanié, 2018). Analogously to Vytlacil (2002), I show that these assumptions
are equivalent to no defiers; this equivalence immediately implies that approaches to
identification and falsification derived under one assumption are valid under others.

The novel results in this paper on identification and falsifiability under no defiers
(or, equivalently, identical compliers or the additive random utility model) suggest
that no defiers may be a natural starting assumption to analyze the effects of un-
ordered treatments under unordered partial monotonicity:

• Unordered partial monotonicity is reasonable in many contexts: when instru-
ments are prices, it is implied by the random utility model.

• No defiers is equivalent to a testable assumption on choice probabilities with
continuous variation in the instruments for all treatments.

• All treatment effects are identified for individuals indifferent between all treat-
ments within the range of this variation.

This paper does not develop an estimator or a statistical test. Conditional on
estimation of additive utility indices and the distribution of unobserved heterogeneity,
results from Kline & Walters (2016) suggest control function approaches can be used
to recover treatment effects. Developing statistical tests of the additive random utility
model, and developing estimators of additive utility indices and the distribution of
unobserved heterogeneity without parametric restrictions on their functional forms,
are important directions for future work.

The conditional equivalence of no defiers, identical compliers, and the additive
random utility model underscores the difficulty of identification of treatment effects
under more general restrictions. Absent these restrictions on heterogeneity of indi-
vidual treatment responses, unordered partial monotonicity and instrument indepen-
dence and exclusion are sufficient to bound treatment effects with discrete instruments
(Kamat et al., 2023; Lee & Salanié, 2023), and to identify treatment effects with large
instrument support (Heckman et al., 2008). As alternatives, assumptions on selec-
tion on outcomes, or weaker restrictions on heterogeneous instrument sensitivity, may
enable tighter bounds on treatment effects while retaining falsifiability.
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appendix

Appendix

Alternative proof of Assumption UPM ⇒ Assumption TRUM. Fix i such that Assump-
tion UPM holds, and suppose there exists z, z′, z′′ ∈ Z such that Di(z) = 0, Di(z

′) =

2, Di(z
′′) = 4; I show that Assumption TRUM holds. It follows that Assumption

UPM implies Assumption TRUM. To show this:

• I begin by showing there exists z∗i2, z∗i4 such that Di(z) = 0 if and only if z2 ≥ z∗i2

and z4 ≥ z∗i4, Di(z) = 2 only if z2 < z∗i2, and Di(z) = 4 only if z4 < z∗i4. This is
analogous to the analysis of deviations A and B in Figure 1.

• The above fully characterizes Di(z) in three of four quadrants of Z relative to
(z∗i2, z

∗
i4); for z2 < z∗i2 and z4 < z∗i4, I then show there exists zi4(z2) such that

zi4(z
∗
i2) = z∗i4, zi4(z2) is increasing in z2, and Di(z) = 4 if and only if z4 < zi4(z2)

for z2 < z∗i2 and z4 < z∗i4. This is analogous to the analysis of deviation C in
Figure 1.

• I then construct µi2(z2) and µi4(z4) satisfying Assumption TRUM from z∗i2, z∗i4,
and zi4(z2).

Construction of z∗i2 and z∗i4 Let

z∗i2 ≡ max
z∈Z,Di(z)=2

z2 z∗i4 ≡ max
z∈Z,Di(z)=4

z4

By construction, Di(z) = 2 only if z2 < z∗i2 and Di(z) = 4 only if z4 < z∗i4. As a
consequence, Di(z) = 0 if z2 < z∗i2 and z4 < z∗i4. It remains to show that Di(z) = 0

only if z2 ≥ z∗i2 and z4 ≥ zi4∗.
Suppose, for contradiction, there exists z ≡ (z2, z4) such that z2 < z∗i2 and Di(z) =

0. By definition of z∗i2, there exists z′ ≡ (z′2, z
′
4) such that z′2 > z2 and Di(z

′) = 2. By
Assumption UPM, Di((z

′
2, z4)) = 0, since decreasing z′2 to z2 cannot shift i 4 → 0 nor 2

→ 0. This implies Di((z
′
2, z

′
4)) = 2 and Di((z

′
2, z4)) = 0, which contradicts Assumption

UPM. So there does not exist z2 < z∗i2 such that Di(z) = 0. Symmetrically, there
does not exist z4 < z∗i4 such that Di(z) = 0. Therefore, Di(z) = 0 only if z2 ≥ z∗i2 and
z4 ≥ z∗i4.
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Construction of zi4(z2) Let

zi4(z2) ≡

 max
(z2,z4)∈Z

z4 z2 < z∗i2

z∗i4 z2 ≥ z∗i2

By construction, for z2 < z∗i2 and z4 < z∗i4, Di(z) = 4 only if z4 < zi4(z2). It remains
to show that Di(z) = 4 if z4 < zi4(z2), and that zi4(z2) is increasing in z2.

First, suppose for contradiction, there exists z = (z2, z4) such that z2 < z∗i2,
z4 < zi4(z2), and Di(z) = 2. By definition of zi4(z2), there exists z′4 > z4 such that
Di((z2, z

′
4)) = 4. This contradicts Assumption UPM, so Di(z) = 4 if z4 < zi4(z2).

Second, suppose for contradiction that zi4(z2) is not increasing. Note that it must
then not be increasing for z2 ≤ z∗i2, as by construction zi4(z2) ≤ z∗i4. There must
then exist z2, z

′
2 such that z2 < z′2 < z∗i2 and zi4(z2) > zi4(z

′
2). There must then exist

z = (z2, z4), z′ = (z′2, z
′
4) such that zi4(z2) ≥ z4 > z′4 > zi4(z

′
2), and Di(z) = 4 and

Di(z
′) = 2. Note that Di((z

′
2, z4)) 6= 0 as z′2 < z∗i2, Di((z

′
2, z4)) 6= 2 by Assumption

UPM as Di((z2, z4)) = 4 and z′2 > z2, and Di((z
′
2, z4)) 6= 4 by Assumption UPM

as Di((z
′
2, z

′
4)) = 2 and z4 > z′4. This yields a contradiction, so zi4(z2) must be

increasing.

Construction of µi2(z2) and µi4(z4) satisfying Assumption TRUM Let

µi2(z2) ≡ 1{z2 > z∗i2}(z2 − z∗i2) + 1{z2 ≤ z∗i2}(zi4(z2)− z∗i4)

µi4(z4) ≡ z4 − z∗i4

and Ui2 = Ui4 = 0, so Vi2(z) = −µi2(z2) and Vi4(z) = −µi4(z4). Below I establish
that this construction satisfies Assumption TRUM.

First, note that µi2(z2) > 0 if and only if z2 > z∗i2. If z2 > z∗i2, then µi2(z2) =

z2 − z∗i2 > 0. If z2 ≤ z∗i2, then µi2(z2) = zi4(z2)− z∗i4 ≤ 0, since zi4(z2) is increasing in
z2 and zi4(z

∗
i2) = z∗i4. Similarly, note that µi4(z4) ≡ z4− z∗i4 > 0 if and only if z4 > z∗i4.

As a consequence:

• If z2 > z∗i2 and z4 > z∗i4 (Di(z) = 0), then µi2(z2) > 0 and µi4(z4) > 0.
• If z2 < z∗i2 and z4 > z∗i4 (Di(z) = 2), then µi2(z2) < 0 and µi4(z4) > 0.
• If z2 > z∗i2 and z4 < z∗i4 (Di(z) = 4), then µi2(z2) > 0 and µi4(z4) < 0.

Second, for z2 < z∗i2 and z4 < z∗i4, µi2(z2) > µi4(z4) if and only if zi4(z2) > z4.
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Therefore, Di(z) = 2 if µi2(z2) > µi4(z4) and Di(z) = 4 if µi2(z2) < µi4(z4).
This characterization of Di(z) from µi2(z2) and µi4(z4) implies that Di(z) =

argmaxd∈{0,2,4} Vid(z), and Assumption TRUM holds.
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