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Abstract

I estimate an elasticity of irrigation adoption to its gross returns in rural In-
dia. Many approaches to estimating this elasticity fail when agents select into
adopting irrigation on heterogeneous gross returns and costs. I develop a novel
approach to correct for selection using two instrumental variable estimators that
can be implemented with aggregate data on gross revenue and adoption of irri-
gation. I use climate and soil characteristics as an instrument for gross returns
to irrigation, and hydrogeology as an instrument for irrigation to correct for se-
lection. I estimate that a 1% increase in the gross returns to irrigation causes a
0.7% increase in adoption of irrigation. I use this elasticity to infer changes in
profits from changes in adoption of irrigation caused by shocks to its profitabil-
ity, and to conduct counterfactuals. First, groundwater depletion from 2000-2010
in northwestern India permanently reduced economic surplus by 1.2% of gross
agricultural revenue. Second, I evaluate a policy that optimally reduces relative
subsidies for groundwater irrigation in districts with large negative pumping ex-
ternalities, while holding total subsidies fixed. Under the policy, depletion caused
by subsidies decreases by 16%, but farmer surplus increases by only 0.07% of gross
agricultural revenue.
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1 Introduction

A common parameter of interest in economics is the elasticity of adoption of a binary
treatment to its treatment effect. In the classic Roy (1951) model, workers’ relative
potential wages across sectors determine their sectoral choice. Similarly, the effect of
the skill premium on high school graduates’ decisions to attend college is an important
input to models of directed technical change (Acemoglu, 1998), as is the effect of firms’
potential profits on entry decisions to many models in industrial organization and trade
(Melitz, 2003). An estimate of this elasticity is useful both for counterfactuals, such as
agents’ responses to a tax, or for welfare analysis, such as inferring lost surplus from
behavioral responses to a shock.

Selection complicates consistent estimation of this elasticity when economic agents
select into treatment on both idiosyncratic treatment effects and perceived costs of
adopting treatment. Existing approaches to estimating this elasticity require assuming
selection on observables (as noted by Heckman (1979)), imposing strong parametric
assumptions (Heckman, 1979), or access to sufficiently high powered instruments to
estimate a control variable nonparametrically (Ahn & Powell, 1993; Das et al., 2003;
Eisenhauer et al., 2015). This contrasts starkly with estimating treatment effects, where
linear instrumental variables estimates a local average treatment effect in the presence of
selection on unobservables and without imposing any parametric assumptions (Imbens
& Angrist, 1994).

In this paper, I focus on the elasticity of irrigation adoption to its gross returns in
India. Irrigation is of first order importance in Indian agriculture. From 1960 to 2010,
during India’s Green Revolution, the irrigated share of agricultural land grew from 18%
to 54%; over 60% of this growth came from the expansion of tubewells for groundwater
extraction. This extraction is not benign; Rodell et al. (2009) find extraction caused
water tables in northwest India to fall 3.3m from 2000-2010, or 0.21 standard deviations
of depth to water table across districts. Falling water tables, by increasing the costs of
groundwater irrigation, have been shown to increase poverty (Sekhri, 2014), decrease
land values (Jacoby, 2017), and cause outmigration and decrease area under irriga-
tion (Fishman et al., 2017). This has important implications for economic efficiency:
groundwater extraction is a classic example of “tragedy of the commons”, as farmers
do not internalize the increase in pumping costs their extraction causes for neighboring
farmers through declining water tables (Jacoby, 2017).

Despite potentially large externalities from groundwater extraction, formulating op-
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timal policy responses to declining water tables in India is difficult for two reasons. First,
the elasticity of irrigation to many counterfactual policies is unknown. Second, empiri-
cal estimates of the impacts per unit decline in water tables on agricultural profits are
not available, as agricultural profits in developing countries are notoriously difficult to
measure reliably.1 An estimate of the elasticity of groundwater irrigation for agricul-
ture to its gross returns would solve both of these challenges. For the first, responses of
irrigation to a policy are proportional to the elasticity of irrigation to its gross returns
times the effect of the policy on relative profits under irrigation. For the second, effects
of declining water tables on adoption of irrigation are proportional to their effects on
farmer profits times the elasticity of irrigation to its gross returns.

I estimate an elasticity of irrigation adoption to its gross returns. To do so, I first
build a generalized Roy model where farmers adopt irrigation if their gross returns
to irrigation are greater than their costs of irrigation; this allows for selection into
irrigation on unobservable heterogeneity in gross returns, and I make no parametric
assumptions about the joint distribution of gross returns and costs. Under this model,
I show that a linear instrumental variable estimator using an instrument for gross
revenue under irrigation estimates the sum of weighted averages of gross returns to
irrigation (a “local average treatment effect”) and inverse semielasticities of demand for
irrigation (a “local average surplus effect”). This builds on formulas for instrumental
variables bias from Angrist et al. (1996); here, the “bias” is the estimand of interest, a
local average surplus effect. Existing results imply the local average treatment effect,
and therefore the local average surplus effect, is identified with a continuous instrument
for irrigation (Heckman & Vytlacil, 2005) or bounded with a discrete instrument for
irrigation (Mogstad et al., 2017).2 Under stronger assumptions, which still allow sorting
on unobserved heterogeneity in both gross returns and costs, I show weighted linear
instrumental variables with an instrument for irrigation is a consistent estimator of this
local average treatment effect; the weights adjust the compliers to the instrument for

1Challenges in the measurement of agricultural profits in developing countries are discussed at
length in Foster & Rosenzweig (2010) and Karlan et al. (2014), among others. To list two, first,
absent administrative data, long household surveys are required to capture the full set of inputs
used in smallholder agriculture. Second, smallholder agriculture intensively uses non-marketed inputs
(primarily household labor) which are difficult to value.

2An extra monotonicity assumption is needed; the marginal farmers induced to adopt irrigation
by the instrument for irrigation and the instrument for gross revenue under irrigation are assumed to
be the same conditional on the propensity score and observables; I discuss this assumption in Section
3.2. For point identification, conditions on the conditional support of the propensity score are needed
as well.
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irrigation to match the compliers to the instrument for gross revenue under irrigation
on observables.3

The generalized Roy model I use to study selection into irrigation on its gross returns
builds on a long literature surveyed in Heckman & Vytlacil (2007a,b); these models have
been used to study sectoral choice and wage premia (Roy (1951)), education and skill
premia (Willis & Rosen, 1979), and, closest to my setting, hybrid maize seed and its
gross returns (Suri, 2011). I build most closely on Eisenhauer et al. (2015), who establish
nonparametric identification of agents’ willingness to pay for treatment (irrigation) from
an instrument for treatment and an instrument for treatment effects (gross returns to
irrigation). I instead assume the existence of an instrument for potential outcome under
treatment (gross revenue under irrigation), and establish nonparametric identification of
the inverse semielasticity of adoption of treatment to the treatment effect under weaker
conditions. These weaker conditions are the union of the assumptions of the standard
local average treatment effect framework (Imbens & Angrist, 1994) and the assumptions
needed for point identification of economic surplus from a change in costs when potential
outcomes are independent of treatment conditional on observables (Willig, 1978; Small
& Rosen, 1981).

I estimate that a 1% increase in the gross returns to irrigation causes a 0.7% in-
crease in the irrigated share of agricultural land. I estimate this elasticity using climate
and soil characteristics as an instrument for gross revenue under irrigation, and using
hydrogeology as an instrument for irrigation. I use this elasticity to infer changes in
profits from changes in adoption of irrigation caused by shocks to profitability of irriga-
tion. Fishman et al. (2017) estimate the effect of declining water tables on adoption of
irrigation; with their estimate, my estimate of this elasticity implies that that the 3.3m
decline in depth to groundwater observed in northwest India from 2000-2010 decreased
economic surplus by 1.2% of gross revenue per hectare. These losses are large; for com-
parison, Government of India (2018) anticipate losses in India due to climate change of
1.8%/decade over the next century. I compare my estimate to a simple physics based
back-of-the-envelope that considers losses only from farmers’ increased electricity costs;
my estimate is six times as large as that back of the envelope, consistent with farmers’

3This approach generalizes assumptions made in Angrist & Fernandez-Val (2010) under which
linear instrumental variable estimators can be reweighted on observables to recover the same local
average treatment effect. In doing so it contributes to a number of recent papers which enables
comparison of compliers to different instruments under monotonicity by estimating marginal treatment
effects (Kowalski, 2016; Arnold et al., 2018; Mountjoy, 2018)) or bounding local average treatment
effects (Mogstad et al., 2017).
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cost share of electricity in irrigation.
I incorporate my estimate of the economic costs of declining water tables into a

model of optimal taxation of electricity for groundwater irrigation, following Allcott
et al. (2014). A social planner chooses subsidies for electricity use, trading off the
value of subsidies as a transfer to farmers with their deadweight loss and the nega-
tive externalities generated from induced marginal extraction. These externalities vary
across districts, as water tables fall more rapidly in thinner aquifers, and these falls are
experienced by more farmers when a larger share of land is irrigated. I calibrate the
model using data on groundwater extraction and aquifer characteristics for districts in
Rajasthan, the state in northwest India most known for falling water tables. I find the
observed electricity subsidy in Rajasthan is responsible for a 1.5 meter fall in water
tables, 46% of the observed rate of decline in northwest India. However, this subsidy
increases farmer surplus by 5.9% of gross agricultural revenue, and on the margin im-
plies the social planner is paying 1.56 Rs for 1.00 Rs in surplus transferred to farmers,
not far from a similar shadow cost in the US from Hendren (2016). Externalities are
important: of the 1.56 Rs, 0.31 Rs are lost to deadweight loss, while 0.25 Rs are lost to
negative externalities from induced marginal extraction.

I consider a counterfactual where the social planner optimally varies subsidies across
districts, relatively decreasing subsidies in high externality districts, while holding fixed
total subsidy payments. This alternate policy reduces the effect of subsidies on water
table declines by 16%, but it increases farmer surplus by only 0.07% of gross agricul-
tural revenue. This increase in surplus is small in magnitude relative to the reallocation
of surplus from subsidies from farmers in districts with high externalities to farmers in
districts with low externalities, consistent with political economy motives for electricity
subsidies (Dubash, 2007). However, the magnitude of surplus gains, and more gener-
ally the magnitude of externalities, are much larger under smaller calibrations of the
discount rate: while transfers and deadweight loss are static, falls in the water table
are permanent in the districts I consider, implying the social planner must trade off
transfers to farmers today with lost profits for farmers in future decades.

In providing these estimates, I build on a deep literature on the economics of irri-
gation. Most directly, I contribute to existing results of the impacts of surface water
irrigation (Duflo & Pande, 2007) and declining water tables (Sekhri, 2014; Fishman
et al., 2017) on welfare proxies in India, and hedonic estimates of the value of access
to groundwater in India (Jacoby, 2017) and in the US (Schlenker et al., 2007). In
contrast, I estimate sufficient parameters for many optimal policy calculations: the
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economic losses from a 1 meter decline in the water table, and the elasticity of demand
for irrigation to its gross returns. In this sense, I build on estimates of the elasticity
of groundwater extraction to electricity subsidies (Badiani & Jessoe, 2017) and out-
put subsidies for water intensive crops (Chatterjee et al., 2017). I use this estimated
elasticity to build on the optimal control literature, summarized in Koundouri (2004a),
and applied in India by Sayre & Taraz (2018); a large body of work has used compli-
cated, calibrated dynamic models of management of aquifers to characterize optimal
policy.4 Contributing to this literature, I take a sufficient statistics approach, building
a simple public economic model following Chetty (2009) and Allcott et al. (2014): em-
pirical estimates of elasticities are used where possible, and calibrated parameters enter
transparently into counterfactuals.

The rest of the paper is organized as follows. Section 2 describes the data used
and the context. Section 3 presents the model, including results on identification and
estimation. Section 4 describes the empirical strategy I use. Section 5 presents the main
results, including the impacts of groundwater depletion on rural surplus, and Section
6 discusses their robustness. Section 7 considers optimal subsidies for electricity for
groundwater irrigation, building on results from Section 5. Section 8 concludes.

2 Data and context

2.1 Context

India’s Green Revolution, starting in the 1960’s, was a time of rapid growth in agri-
cultural productivity, driven by increased adoption of new high yielding varieties of
seeds, fertilizers, pesticides, and irrigation (Evenson & Gollin, 2003). Irrigation was a
particularly important component: large investments were made in the expansion of
surface water irrigation, with over 2,400 large dams constructed from 1971-1999 (Duflo
& Pande, 2007), but the majority of growth of irrigation was ground water irrigation
(Gandhi & Bhamoriya, 2011). The irrigated share of agricultural land in India expanded
from 18% to 54% from 1960 to 2008, while the share of agricultural land irrigated using
tubewells grew from 0% to 22%, accounting for 63% of the overall growth in irrigation.
Reduced form evidence suggests that access to groundwater has large impacts on social

4Results from these models can be sensitive to the calibration: Gisser & Sanchez (1980) famously
find small gains from optimal policy relative to laissez faire, but Koundouri (2004b) argue their findings
are driven by their steep calibrated marginal benefit curves, while Brozović et al. (2010) argue they
are driven by the characteristics of the aquifer they study.
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welfare (Sekhri, 2014; Fishman et al., 2017; Jacoby, 2017) and is an important driver of
adoption of modern agricultural technologies (Sekhri, 2014). This evidence suggests a
large share of agricultural productivity growth during the Green Revolution may have
been caused by access to groundwater.

Groundwater is stored in underground aquifers, which are underground layers of
permeable rock or other materials that hold water. The meters below ground level at
which groundwater is available is often referred to as the depth to water table, and
varies both across aquifers and within aquifer. For agriculture in India, as in much
of the world, this groundwater is typically extracted using tubewells. In a tubewell, a
narrow pipe, typically PVC or stainless steel, is bored into the ground, fitted with a
strainer cap, and installed with a pump used to pump the water to the surface. Drilling
tubewells is costly: according to the 2007 Minor Irrigation Census, the fixed cost of
infrastructure for groundwater irrigation in the average district was 26,600 Rs/ha, just
over 1 year of agricultural revenue per hectare. This cost varies substantially across
districts, with a coefficient of variation of 0.55. This variation is partially driven by the
accessibility of groundwater. At greater depths to water table, wells must be drilled
deeper, which is more costly (Jacoby, 2017). Additionally, at these lower depths, more
expensive and more powerful pumps are required (Sekhri, 2014). Moreover, different
types of soils can store different quantities of water, and vary in their permeability.
These hydrogeological characteristics affect the rate at which groundwater resources
can be extracted that balances natural rates of recharge (“potential aquifer yield” or
“safe yield”), the rate at which the water table falls per unit of water extracted (“specific
yield”), and the number of wells required per unit of water extracted (Fishman et al.,
2017).

Although some of this variation in accessibility of groundwater is driven by exoge-
nous hydrogeological characteristics of the districts, human activity can impact this
accessibility. In many districts, ancient groundwater resources are trapped in confined
aquifers; these resources are exhaustible. Rodell et al. (2009) use satellite data to show
declining water tables in northwestern India, while Suhag (2016) show that the Indian
Central Groundwater Board’s calculations based on hydrology models imply overex-
ploitation of groundwater resources in the same region. Appendix Figure A.1 shows
that this overexploitation (high withdrawals of groundwater as a percentage of natural
rates of recharge) is most prevalent in states that experienced the largest increases in
agricultural productivity during the Green Revolution, highlighting the link between
agricultural productivity and groundwater extraction. In many places, declining wa-
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ter tables are believed to have significantly increased costs of groundwater extraction
(Fishman et al., 2017; Jacoby, 2017). On the other hand, rainwater capture and sur-
face water irrigation have the potential to replenish groundwater reserves and reduce
dependency on groundwater (Sekhri, 2013).

This decline has been accelerated by implicit subsidies for groundwater irrigation.
Most significantly, most states in India do not have volumetric pricing of electricity, but
instead charge pump capacity fees. These fees partially substitute for volumetric pric-
ing, since many farmers pump groundwater whenever electricity is available during the
growing seasons. However, the levels of fees correspond to large subsidies for electricity,
ranging from 52% to 100% subsidies (Fishman et al., 2016). Badiani & Jessoe (2017)
use panel variation in these subsidies to estimate an elasticity of water use to the price
of electricity of -0.18, suggesting these subsidies contribute meaningfully to declining
water tables. However, they point out that this inelastic demand for electricity sug-
gests limited deadweight loss from the subsidies. Since a commonly stated motivation
for subsidies is as a transfer to farmers (Dubash, 2007), a social planner who places a
high value on marginal consumption by farmers, potentially due to a lack of availability
of other policy instruments for making such transfers, might find it optimal to trade
off a small deadweight loss to increase transfers to farmers. Moreover, subsidies may
correct for the presence of market power in water markets, which might cause socially
suboptimal rates of groundwater extraction (Gine & Jacoby, 2016).

In addition to traditional concerns of inefficiency due to subsidies or other wedges,
rates of groundwater extraction may be higher than is socially optimal due to negative
externalities in pumping groundwater. As farmers extract groundwater, water is drawn
from nearby parts of the aquifer, decreasing the water table for neighboring farmers
(Theis, 1935), and increasing their costs of extracting groundwater. In the presence of
such externalities, farmers will not internalize the increased costs their pumping causes
to other farmers. Jacoby (2017) suggests externalities may be particularly important
in confined aquifers in India; wells are frequently tightly clustered, and interference
between wells is a concern, especially during the dry season.

An estimate of the magnitude of this externality is necessary to determine an op-
timal tax, or subsidy, for groundwater irrigation. To calculate this externality, one
can decompose it into two terms. First, increased pumping of groundwater causes a
decline in the water table. The impact of increased pumping on the water table varies
significantly across aquifers: pumping one cubic meter of water causes the water table
to decline by as much as 20,000 cubic meters in thin, confined aquifers, and by as little
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as 5 cubic meters in thick, unconfined aquifers (Gisser & Sanchez, 1980; Brozović et al.,
2010).

Second, these declines in the water table cause decreases in the profitability of
irrigated agriculture, as the cost of groundwater extraction increases. These increases in
costs are an externality: they are almost completely experienced by farmers other than
the farmer extracting the unit of water. Estimating this increase in costs is hard: costs
are notoriously hard to observe in agricultural data (Foster & Rosenzweig, 2010; Karlan
et al., 2014), and as a result empirical estimates of the economic costs of declining water
tables are unavailable. In India, past work has estimated impacts of declining water
tables on welfare proxies, including poverty headcount (Sekhri, 2014) and outmigration
(Fishman et al., 2017). However, calculating the externality requires an estimate of
the economic damages from a unit decline in water tables. Existing approaches to
estimating this have focused largely on the United States, and have typically used
hedonic regressions (see Koundouri (2004a) for a review); these approaches may not be
feasible in developing country settings such as India, where the assumption of frictionless
land markets and full information is less likely to hold.5

2.2 Data

I merge data from multiple sources on agriculture in India. Since district boundaries in
India have changed multiple times over the past century, all analysis is done using 1961
state and district boundaries. Descriptive statistics for all variables used in analysis are
presented in Table 1.

Primary agricultural outcomes come from two sources. First, I merge together
the World Bank India Agriculture and Climate Data Set, which contains data from
1956-1987, with the ICRISAT Village Dynamics in South Asia Macro-Meso Database,
which contains data from 1966-2011. I refer to this merged dataset as “Ag ’56-’11”.6

5Many studies have also used contingent valuation approaches, which can be severely biased. A
noteable alternative approach is taken by Hagerty (2018), who studies water markets in the United
States. However, they estimate the willingness to pay for one unit of water, which is different from the
economic costs of a one unit decline in water tables. One notable exception is Jacoby (2017), who ap-
plies a hedonic regression in India to estimate the economic value of having a borewell using exogenous
drilling failures as an instrument. Since the presence of a functioning borewell is easily observable, the
assumptions underpinning a hedonic regression are likely to hold. However, this estimate cannot be
converted into an estimate of the economic costs of a one unit decline in water tables without strong
assumptions.

6The former dataset has been used by many papers analyzing agriculture in India, including Duflo
& Pande (2007) and Sekhri (2014) studying irrigation, while the latter dataset has been used by
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The merged dataset contains annual district level data on crop specific land allocations
(rainfed and irrigated), prices, and yields. I use this to construct an imbalanced panel
of 222 districts in 11 states from 1956-2011 of agricultural revenue per hectare and
irrigated share of agricultural land. While more districts are observed in this data set, I
restrict to districts which appear in all primary data sets used for analysis to maintain
comparability across specifications.7 For much of the analysis, I restrict to the most
recent 5 year cross section in this data set.

I supplement this with the 2012 Agricultural National Sample Survey, which in-
cluded questions on household level land allocations and agricultural production by
crop, crucially both on irrigated and rainfed land; I refer to these observations as plots.
The data also contain household level expenditures on agricultural inputs by category.
I refer to this dataset as “NSS ’12”. 35,200 households were surveyed, and the survey is
intended to be representative at the district level. The sampling of villages from which
surveyed households were selected was stratified on share of village land irrigated; be-
cause this stratification is correlated with treatment (irrigation), I use survey weights
in all analysis with this data. Moreover, to maintain comparability with Ag ’56-’11, I
weight plots by area, I restrict to crops observed in Ag ’56-’11, and I reweight districts
so each district receives the same weight. Both revenue per hectare and input expen-
ditures per hectare are noisily measured at high quantiles; I winsorize them at 100,000
Rs/ha (95th percentile for revenue per hectare, 99th percentile for input expenditures
per hectare).

For data on irrigation technologies, I use the 2007 Minor Irrigation Census. This
survey censuses minor irrigation schemes (culturable command area less than 2000
hectares), which account for 65% of irrigated area and almost all groundwater irri-
gation. I refer to this dataset as “Irr ’07”. In this, I observe district level counts of
minor irrigation schemes by type (dugwell, shallow tubewell, deep tubewell, surface
flow scheme, surface lift scheme), hectares of potential created and used for surface
water and ground water schemes, and counts of ground and surface water schemes by
cost.8

Allen & Atkin (2015) among others.
7Most notably, this restriction drops Chhattisgarh, Jharkhand, and West Bengal.
8I observe 5 categories, corresponding to [0 Rs., 10,000 Rs.), [10,000 Rs., 50,000 Rs.), [50,000 Rs.,

100,000 Rs.), [100,000 Rs., 1,000,000 Rs.), [1,000,000 Rs., ∞). I code each of these as 10,000 Rs.,
50,000 Rs., 100,000 Rs., 300,000 Rs., and 1,000,000 Rs. Alternative codings do not affect significance
of any results nor magnitudes of any results in logs, but magnitudes in levels are sensitive to the coding
of the [100,000 Rs., 1,000,000 Rs.) category. Estimates of the pseudo treatment effect elasticity of
demand are unaffected.
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I use potential aquifer yield as my instrument for costs of irrigation, a measure of
the sustainable rate of extraction of groundwater from a typical tubewell. I constructed
this measure by georeferencing a hydrogeological map of India from the Central Ground
Water Board (CGWB) which categorizes all land by potential aquifer yield and aquifer
type. The measure ranges from 0 L/s to 40 L/s.9 In all analysis I divide by 40 to
normalize this measure to range from 0 to 1, and I plot variation in this measure across
districts in Panel (a) of Figure 1.

I use a measure of log relative potential irrigated crop yield as my instrument for
potential gross revenue under irrigation. For data on potential crop yield, I use the FAO
GAEZ database; this source is discussed at length in Costinot et al. (2016). Among
other products, it includes constructed measures of potential yields under 5 input sce-
narios (low rainfed, intermediate rainfed/irrigated, high rainfed/irrigated) based on
climate and soil characteristics. I construct potential rainfed crop yield as the weighted
average of potential crop yields under the intermediate rainfed scenario. I construct
relative potential irrigated crop yield as the ratio of the weighted average of potential
crop yields under the intermediate irrigated scenario to potential rainfed crop yield.10

I plot variation in log relative potential irrigated crop yield across districts in Panel
(b) of Figure 1.11 This measure is likely to be correlated with gross revenue under
rainfed agriculture; I therefore control for log potential rainfed crop yield in all primary
specifications. I discuss the construction of relative potential irrigated crop yield and
potential rainfed crop yield in more detail in Appendix A.

I make use of some supplementary datasets. I use data from the Indian Central
Groundwater Board’s network of monitoring tubewells on seasonal depth to water table

9All land is cateogorized as unconsolidated formations (>40 L/s, 25-40 L/s, 10-25 L/s, <10 L/s),
consolidated/semi-consolidated formations (1-25 L/s, 1-10 L/s, 1-5 L/s), and hilly areas (1 L/s), which
I code as 40, 25, 10, 1, 25, 10, 1, and 1 L/s, respectively. This measure is strongly correlated with the
measure of aquifer depth used by Sekhri (2014), and the measure of whether groundwater formations
are unconsolidated or consolidated used by D’Agostino (2017).

10The weights used are state-by-state shares of land allocated to different crops. To identify effects
from variation in potential crop yield, and not variation in weights, I control for state fixed effects in
all analysis. Other work has used the difference in yields under different scenarios as an instrument
for returns to technology adoption (Bustos et al., 2016).

11The measure is almost identical if I use the high input scenarios; in India, for almost all crops,
potential yields under the high input scenario are closely approximated by a crop specific multiple of
potential yields under the intermediate and low input scenarios. Regressing potential yields from the
rainfed high input scenario on the rainfed intermediate input scenario yields R2 ranging from 0.87
to 1, while regressing potential yields from the irrigated intermediate input scenario on the rainfed
intermediate input scenario yields R2 ranging from 0.04 and 0.06 on the low end (for water intensive
sugarcane and rice) to 0.90 and 1 on the high end (for drought resilient sorghum and pearl millet).
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from 1995 to 2017; I refer to this dataset as “Well ’95-’17”. Data on the groundwater
share of irrigation by district in 2001 is from the FAO Global Map of Irrigation Areas.
Data sources of all calibrated parameters for counterfactual exercises in Section 5.4 and
Section 7 are cited in Table 7.

3 Model

I consider a model of profit maximizing farmers deciding whether to irrigate their land.
Following Suri (2011), I use a generalized Roy model to model the selection decision:
although only farmers’ gross revenue conditional on their adoption decision is observed,
farmers decide to irrigate if their gross revenue under irrigation minus gross revenue
under rainfed agriculture (gross returns to irrigation) is greater than their relative costs
of irrigating. Past work has established nonparametric identification of parameters of
these models from panel data (Suri, 2011), instruments for costs (Heckman & Vytlacil,
2005), instruments for treatment effects (Adão (2016); in this context, treatment effects
are the gross returns to irrigation), and instruments for both costs and treatment effects
(Das et al., 2003; Eisenhauer et al., 2015).

In Section 3.1, I consider a simple econometric model to motivate the more general
framework. In Section 3.2, I setup a generalized Roy model building on the work cited
above. I assume the presence of a conventional cost instrument, but I also impose a
novel exclusion restriction on an outcome instrument: I assume the outcome instru-
ment does not affect gross revenue under rainfed agriculture (potential outcome under
control). In Section 3.3, I define the marginal treatment effect (following Heckman &
Vytlacil (2005)), and two novel parameters, the marginal surplus effect and the treat-
ment effect elasticity of demand. The marginal surplus effect builds on Willig (1978)
and Small & Rosen (1981): it is the inverse semielasticity of demand for irrigation,
which equals the effect on profits caused by shifts to profitability of irrigation, as in-
ferred by changes in adoption of irrigation. The treatment effect elasticity of demand
captures the percentage increase in adoption of irrigation caused by a 1% increase in
treatment on the treated (the effect of irrigation on gross revenue for inframarginal ir-
rigators); it is inversely proportional to the marginal surplus effect and unitless, which
facilitates interpretation and comparison across studies. In Section 3.4, I establish non-
parametric identification of the marginal surplus effect. I show that the treatment effect
elasticity of demand is not nonparametrically identified without strong assumptions on
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the instruments, but a pseudo treatment effect elasticity of demand, that serves as a
reasonable approximation in many contexts, is. In Section 3.5, I discuss estimation of
the marginal surplus effect. I show that linear instrumental variables using the outcome
instrument estimates the sum of a local average treatment effect (a weighted average
of marginal treatment effects) and a local average surplus effect (a weighted average
of marginal surplus effects), and that these weights are nonparametrically identified.
I compare the linear instrumental variables approach to a control function approach,
and show that with the novel exclusion restriction the control function approach is
overidentified.

3.1 A simplified econometric model

Consider the following econometric model

Yi = β0 + β1Di + β2DiWi + εi

Di = γ0 + γ1Zi + γ2Wi + ηi

where Yi is an observed outcome for agent i and Di is the agent’s endogenous adoption
of a binary treatment. I make the independence assumption that (Zi,Wi) ⊥ (εi, ηi). Zi

shifts agents decisions to adopt treatment. Wi shifts agents decisions to adopt treatment
through its effect on treatment effects; β1 + β2w is the treatment effect for agents with
Wi = w. The estimand of interest is γ2

β2
, or the effect of a unit increase in treatment

effects on adoption of treatment. An implicit exclusion restriction has been made here,
that Wi does not affect outcomes for agents who do not adopt treatment.

I consider estimation of β2 by linear instrumental variables, using Zi and Wi as
instruments for Di and DiWi. This yields the following IV estimand for β2, the effect
of an increase in Wi on treatment effects.

β̂2 =

Cov(Yi,Wi)
Cov(Di,Wi)

− Cov(Yi,Zi)
Cov(Di,Zi)

Cov(DiWi,Wi)
Cov(Di,Wi)

− Cov(DiWi,Zi)
Cov(Di,Zi)

This estimator is the ratio of two terms. The denominator is nonzero when there is
a first stage for the IV estimator (Wi and Zi are correlated with DiWi relative to
Di differentially). The numerator is the difference between two linear IV estimators.
The first of these estimators, but not the second, violates the exclusion restriction
for instrumental variables in the more general correlated random coefficients model
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Yi = β0 + β1iDi + εi.12

What is this difference between IV estimators under this model? For expositional
purposes, I assume that Zi and Wi are each binary, that they are independent, and
that they are each 0 (1) with probability 1

2
(1
2
).13

Cov(Yi,Wi)

Cov(Di,Wi)
− Cov(Yi, Zi)

Cov(Di, Zi)
=

β2E[Di]

γ2

The difference between the two linear IV estimators is β2, the change in treatment
effects, times E[Di], average adoption, divided by γ2, the change in adoption. This is
an inverse semielasticity of adoption to the treatment effect. The first IV estimator,
Cov(Yi,Wi)
Cov(Di,Wi)

, is the sum of two terms: β1 + β2E[Wi], the local average treatment effect for
agents induced to adopt treatment by Wi or Zi, and an inverse semielasticity β2E[Di]

γ2
,

the direct effect of Wi on outcomes per unit change in adoption of treatment.
The result is that the difference between two linear IV estimators, the first using an

“instrument” for potential outcome under treatment, and the second using an instru-
ment for treatment, estimates an inverse semielasticity of adoption of treatment to the
treatment effect when the distribution of the “instrument” for potential outcome under
treatment has no skew. However, it is not clear what this approach estimates when non-
linearities or more flexible patterns of selection are permitted. With this motivation, I
now ask if a similar approach can be used to estimate an inverse semielasticity of adop-
tion in a generalized Roy model, where agents select into treatment on heterogeneous
treatment effects and costs of adoption.14

12Note that this estimator I propose of β2 is different from the natural estimator in the interacted
model Yi = β0 + β1Di + β2DiWi + β3Wi + εi, using Zi and ZiWi as instruments for Di and DiWi.
When Wi is binary, one can show this β̂2 = Cov(Yi,Zi|Wi=1)

Cov(Di,Zi|Wi=1) −
Cov(Yi,Zi|Wi=0)
Cov(Di,Zi|Wi=0) (Hull, 2018). Under the

more general econometric model presented in Section 3.2, even local versions of this estimator, and the
one I propose under the exclusion restriction β3 = 0, estimate different parameters. Loosely speaking,
the estimator in the interacted model estimates the effect of Wi on the local average treatment effect,
while the estimator in the model I propose estimates the effect of Wi on treatment on the treated.

13The latter two are without loss of generality as long as (Zi,Wi) = (z, w) with positive probability
for all (z, w) ∈ {0, 1}2, as this can be achieved by reweighting. A more general model that relaxes
many of these assumptions is developed in Section 3.2.

14Wooldridge (2015) proposes control function approaches that allow for selection on unobservable
treatment effect heterogeneity and that allow for multiple endogenous regressors. However, what linear
estimators with multiple endogenous regressors estimate when the structural model is misspecified
may not be useful (Kirkeboen et al., 2016; Hull, 2018; Mountjoy, 2018), while linear instrumental
variables with a single endogenous regressor retains a LATE interpretation without any assumptions
on functional forms (Heckman & Vytlacil, 2005). I ask if this robustness can be extended to linear
instrumental variables with Wi.
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3.2 Environment

Farmers (“agents”) decide whether to adopt irrigation (“treatment”) to maximize their
profits (“surplus”), which is their gross revenue (“outcome”) net of any costs, broadly
defined. Let Y1i be the gross revenue farmer i receives when they irrigate (“potential
outcome under treatment”), and Y0i be the gross revenue farmer i receives when they
engage in rainfed agriculture (“potential outcome under control”). Let C1i be farmer
i’s relative costs of adopting irrigation (“costs of adoption”). Let Di be an indicator
for farmer i’s decision to irrigate (“treatment indicator”). Farmers maximize profits,
πi = Di(Y1i − C1i) + (1 − Di)Y0i (“surplus”). I assume the researcher observes Yi =

DiY1i + (1 −Di)Y0i, farmer i’s gross revenue (“outcome”), and Di, farmer i’s decision
to irrigate (“adoption decision”), but does not observe profits, costs, or counterfactual
revenue.

The surplus maximization assumption implies

Di = 1{Y1i − C1i − Y0i > 0} (1)

Equation 1 is equivalent to the generalized Roy modeling framework discussed in Heck-
man & Vytlacil (2007a,b). Agents adopt treatment if their treatment effect (Y1i − Y0i)
is greater than their costs of adoption (C1i).

Next, I assume the presence of instruments z and w. z is a conventional instrument,
in that it shifts agents’ costs of adoption, C1i, without affecting their potential outcomes,
Y1i and Y0i. I refer to it as the “cost instrument”. However, w is a nonstandard
instrument: it shifts agents’ potential outcome under treatment, Y1i, without shifting
their costs of adoption, C1i, or their potential outcome under control, Y0i. I refer to it
as the “outcome instrument”. Additional assumptions are explained below.

Assumption 1.

Y1i(w) = VγiγW (w) + V1i

C1i(z) = VγiγZ(z) + VCi

Y0i = V0i

Assumption 2. γW and γZ are each monotonic in their arguments, and Vγi > 0

∀i. The distribution of Vi ≡ −V1i+VCi+V0i

Vγi
is continuous and has a strictly increasing

cumulative distribution function FV and smooth density fV .
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Assumption 1 implicitly makes a number of assumptions. First, w and z each
satisfy exclusion restrictions. Only Y1i is structurally a function of w, and only C1i is
structurally a function of z. These exclusion restrictions are strong assumptions, and
I discuss possible violations in my empirical context in Section 6. That only Y1i is
structurally a function of w is a novel exclusion restriction in generalized Roy models.15

It is most similar to Eisenhauer et al. (2015), who assume there is a regressor excluded
from just C1i, while I assume w is excluded from C1i and Y0i. That z is excluded
from Y1i and Y0i is the standard exclusion restriction made to estimate a local average
treatment effect.

Second, (z, w) are weakly separable from unobserved heterogeneity, through the in-
dex (γW (w) − γZ(z)). Combined with Assumption 2, this implies monotonicity in an
index of (z, w). It also implies the more general weak separability assumption made in
Willig (1978), Small & Rosen (1981), and Bhattacharya (2017), who assume weak sep-
arability of price and product quality to estimate welfare impacts of changes to product
quality on consumers. Crucially, this assumption guarantees that z and w enter choices
and surplus symmetrically, so impacts on choices are strictly increasing in impacts on
potential surplus under treatment. However, although weak separability only requires
that (z, w) enter jointly through a flexible index, the more restrictive functional form
I use is the most general that satisfies weak separability, the exclusion restrictions, the
monotonicity assumptions, and the additive generalized Roy structure.16 Despite the
restrictiveness of these assumptions, variability in Vγi flexibly captures, for example,
that more productive farmers might be more responsive to shifts in the instruments,
something that similar work does not allow.17

Assumption 2 makes all remaining technical assumptions. The assumptions on
monotonicity of γZ and γW are standard for instrumental variables, and reasonable
in my context.18 That the distribution of Vi is continuous and strictly increasing is a

15It is not novel in one-sided selection models, such as studying labor market participation, which
two-sided models nest with a normalization of Y0i = 0 (no earnings for non-participants). In these
models, w is a wage shifter, Di is the labor market participation decision, and z is an instrument for
participation.

16The proof is in Appendix B.1.
17Specifically, Eisenhauer et al. (2015) and Adão (2016) require their instruments (z, w) are addi-

tively separable from unobserved heterogeneity, which implies that their instrument w has a homoge-
neous effect across agents conditional on observables. However, approaches in Das et al. (2003) and
Eisenhauer et al. (2015) are straightforward to generalize to this environment.

18Specifically, in my context, I assume that potential revenue under irrigation is strictly increasing
in potential irrigated crop yields, and that costs of irrigating are strictly decreasing in potential aquifer
yield.
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standard technical assumption.
Additionally, define

Ui = FV (Vi)

Ui is distributed Uniform[0,1], and orders agents from highest to lowest propensity to
adopt treatment. Note that Equation 1, combined with Assumption 1 and the definition
of Vi in Assumption 2, can now be rewritten as Di = 1{Ui < FV (γW (w) − γZ(z))}.
Therefore, the share of agents who adopt treatment E[Di(z, w)] = FV (γW (w)− γZ(z)).

Lastly, let Zi and Wi be agent i’s realized value of the instruments z and w. I make
an independence assumption that will be sufficient for identification.

Assumption 3.
(Zi,Wi) ⊥ (V0i, VCi, V1i, Vγi)

3.3 Marginal surplus effects and marginal treatment effects

Within this structure, it is now possible to define the marginal treatment effect and the
marginal surplus effect.

MTE(u;w) = E[Y1i(w)− Y0i|Ui = u] (2)

MSE(u) = u

fV (F
−1
V (u))

E[Vγi|Ui < u] (3)

The definition of the marginal treatment effect in Equation 2 is standard and follows
Heckman & Vytlacil (2005). The definition of the marginal surplus effect in Equation
3 is novel. To interpret this, note that the ratio u

fV (F−1
V (u))

is just a Mills ratio for the
random variable Vi, evaluated at v = F−1

V (u). The numerator, u, is the share of agents
adopting treatment. The denominator, fV (F−1

V (u)), is the density of agents on the
margin, which is similar to an elasticity: when the density of marginal agents is large,
small increases in potential surplus under treatment cause large movements of agents
into treatment. The third term reflects the extent to which inframarginal adopters of
treatment are relatively more affected by shifts to z and w than compliers.

Following this intuition, we can arrive at a key result.

dE[Yi(z, w)]/dz

dE[Di(z, w)]/dz
= MTE(E[Di(z, w)];w) (4)

dE[πi(z, w)]/dz

dE[Di(z, w)]/dz
=

dE[πi(z, w)]/dw

dE[Di(z, w)]/dw
= MSE(E[Di(z, w)]) (5)
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Equation 4 gives the standard result on marginal treatment effects: the marginal treat-
ment effect is the change in average outcomes per unit change in adoption of treatment
caused by a shift to z. Equation 5 gives a new result on the marginal surplus effect:
the marginal surplus effect is the change in average surplus per unit change in adoption
of treatment caused by a shift to z or w.19

Additionally, following Heckman & Vytlacil (2007a,b), it follows from Equation 4
that one can define impacts on outcomes of policies that shift z in terms of MTE and
E[Di] alone. Similarly, it follows from Equation 5 that one can define impacts on surplus
of policies that shift z or w in terms of MSE and E[Di] alone.

E[Yi(z
′, w)]− E[Yi(z, w)]

E[Di(z′, w)]− E[Di(z, w)]
=

∫ E[Di(z
′,w)]

E[Di(z,w)]
MTE(u;w)du

E[Di(z′, w)]− E[Di(z, w)]︸ ︷︷ ︸
policy relevant treatment effect

(6)

E[πi(z
′, w′)]− E[πi(z, w)]

E[Di(z′, w′)]− E[Di(z, w)]
=

∫ E[Di(z
′,w′)]

E[Di(z,w)]
MSE(u)du

E[Di(z′, w′)]− E[Di(z, w)]︸ ︷︷ ︸
policy relevant surplus effect

(7)

Equation 6 is the standard result from Heckman & Vytlacil (2007a,b) that the impact
of a broad class of policies on average outcomes is equal to the product of a policy
relevant treatment effect and the impact of the policy on adoption of treatment, where
the policy relevant treatment effect is a weighted average of marginal treatment effects.
Equation 7 is a new result that shows that the impact of a broad class of policies
on average surplus is equal to the product of a policy relevant surplus effect and the
impact of the policy on adoption of treatment, where the policy relevant surplus effect
is a weighted average of marginal surplus effects.

Lastly, to interpret Equation 5, it is helpful to draw a comparison to consumer
theory. There, a classic result is that the marginal surplus effect is price divided by
the price elasticity of demand (Willig, 1978; Small & Rosen, 1981). Alternatively, one
could phrase this as the price elasticity of demand is equal to the price divided by the
marginal surplus effect. An equivalent result holds here. I define

TOT(u;w) = E[Y1i(w)− Y0i|Ui < u] (8)

ε∗(u;w) =
TOT(u;w)
MSE(u)

(9)

19The derivations of Equation 4 and Equation 5 is in Appendix B.1.
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Equation 8 gives the standard definition of treatment on the treated. Note that it has
the standard interpretation, that TOT(E[Di(z, w)];w) = E[Y1i(w)− Y0i|Di(z, w) = 1].
Given the analogy in consumer theory, one might hope that ε∗(u;w), as defined in
Equation 9, is the treatment effect elasticity of demand. Equation 10 shows this result
below.

TOT(E[Di(z, w)];w)

E[Di(z, w)]

dE[Di(z, w)]/dw

∂TOT(E[Di(z, w)];w)/∂w
= ε∗(E[Di(z, w)];w) (10)

Equation 10, combined with Equation 9, shows that the marginal surplus effect can be
interpreted as the ratio of treatment on the treated to the treatment effect elasticity of
demand for treatment.20

3.4 Identification

The identification of marginal surplus effects and marginal treatment effects follows
from classic results on local instrumental variables from Heckman & Vytlacil (1999,
2005). I now assume that (Zi,Wi) have a smooth density that is strictly positive
at (z, w). Independence of the instruments and standard results on nonparametric
identification imply the expectations E[Yi(z, w)] and E[Di(z, w)] and their derivatives
with respect to z and w are identified (Matzkin, 2007).21 As in Heckman & Vytlacil
(2005), Equation 4 therefore establishes identification of marginal treatment effects
from local instrumental variables using the cost instrument.

For identification of marginal surplus effects, the key result is what local instrumen-
tal variables using the outcome instrument estimates.

dE[Yi(z, w)]/dw

dE[Di(z, w)]/dw
= MTE(E[Di(z, w)];w) +MSE(E[Di(z, w)]) (11)

Local instrumental variables using the outcome instrument estimates the marginal
treatment effect plus the marginal surplus effect.22 This is the local version of the
result for the linear model in Section 3.1.

Identification of marginal surplus effects follows simply from subtracting Equation
20The derivation of Equation 10 is in Appendix B.1.
21Formally, E[Yi(z, w)] = E[Yi|Zi = z,Wi = w] and E[Di(z, w)] = E[Di|Zi = z,Wi = w].
22The derivation of Equation 11 is in Appendix B.1.
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4 from Equation 11.

MSE(E[Di(z, w)]) =
dE[Yi(z, w)]/dw

dE[Di(z, w)]/dw
− dE[Yi(z, w)]/dz

dE[Di(z, w)]/dz
(12)

The intuition for this result is visible in Figure 2. Both the cost instrument z and the
outcome instrument w affect agent adoption decisions and surplus through a common
index, because of the weak separability assumption. Whether surplus under treatment
increases from Y1i−C1i to Y ∗

1i−C1i (shock to w, as in Panel (a)) or to Y1i−C∗
1i (shock to

z, as in Panel (b)), the effect on choices is a sufficient statistic for the effect on surplus;
the marginal surplus effect is well defined. However, their effects on outcomes differ. In
Panel (b), we can see that the cost instrument increases outcomes proportional to the
marginal treatment effect: potential outcomes are unaffected by the cost instrument,
but the induced increase in adoption E[Di] causes agents’ outcomes to increase by their
treatment effect. However, in Panel (a), we can see that the outcome instrument has
two effects on outcomes. The first effect is proportional to the marginal treatment effect:
adoption E[Di] increases because surplus under treatment increases, and this increase in
adoption E[Di] causes agents’ outcomes to increase by their treatment effect. However,
the second effect is proportional to the marginal surplus effect. This is the direct effect
on outcomes caused by the increase in Y1i; the increase in Y1i and the increase in Y1i−C1i

are the same (because of the exclusion restriction), so this increase is exactly the same
as the effect of the outcome instrument on surplus.

Note, however, that unlike marginal surplus effects and marginal treatment effects,
treatment on the treated and the treatment effect elasticity of demand are not identified
without either parametric assumptions or an identification at infinity argument. This
contrasts with the standard consumer theory setting, where typically a price elasticity
of demand is estimated, and marginal surplus effects can be calculated using that price
elasticity. To allow comparison of results with price elasticities, I instead define the
pseudo treatment effect elasticity of demand to be

ε(u;w) =
MTE(u;w)
MSE(u)

(13)

which, following the results above, is also identified. It is biased relative to the treatment
effect elasticity of demand: ε∗(u;w) = TOT(u;w)

MTE(u;w)
ε(u;w), so the pseudo treatment effect

elasticity of demand, which requires less restrictive assumptions for identification, will
be too small (large) when treatment on the treated is large (small) relative to the
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marginal treatment effect.23

3.5 Estimation

For estimation, I now assume that a set of observable characteristics of each agent, Xi,
are also observed. All assumptions above are now made conditional on Xi = x, and all
results above now hold conditional on Xi = x. No additional assumptions are made
except where explicitly stated.

3.5.1 Instrumental variables

The nonparametric identification results suggest the application of local instrumental
variable estimators. In practice, as discussed in Carneiro et al. (2011) and Eisenhauer
et al. (2015), local instrumental variable estimators are difficult to implement in practice
while conditioning on (Zi,Wi, Xi) jointly. Frequently, their implementation relies on
strong restrictions on how (Wi, Xi) can enter outcome equations. However, as Imbens
& Angrist (1994) and Heckman & Vytlacil (2005) show, linear instrumental variables
using a conventional instrument, such as Zi, makes no such assumptions: instead, it
only requires the researcher to estimate the expectation of Zi conditional on all variables
which are not excluded from outcome equations (in this case, (Wi, Xi)). Then, linear
instrumental variables estimates a local average treatment effect, or a weighted average
of marginal treatment effects. Flexibly controlling for observables in linear instrumental
variables is well understood (for example, see Chernozhukov et al. (2016)), and does not
require any assumptions on how non-excluded observables enter outcome equations, in
contrast to how local instrumental variable methods are often implemented (Carneiro
et al., 2011).

Just as linear instrumental variables with Zi estimates a local average treatment
effect, linear instrumental variables with Wi estimates the sum of a local average treat-
ment effect and a local average surplus effect, where a local average surplus effect is a

23Despite this, the pseudo treatment effect elasticity of demand is still useful. In some cases, instead
of observing the outcome Yi, the researcher might observe the outcome Yi times an unknown constant
(in agriculture, this could be yields measured using satellite data, as in Burke & Lobell (2017)) or costs
DiC1i times an unknown constant (in my context, this is fixed infrastructure costs for irrigation). In
both cases, the pseudo treatment effect elasticity of demand can still be consistently estimated. In
my context, this permits an overidentification test. In other cases, one might estimate the pseudo
treatment effect elasticity of demand in one context, and extrapolate to another where the marginal
treatment effect is known but an instrument to estimate the marginal surplus effect is unobserved.
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weighted average of marginal surplus effects. Formally,

βIV
Z ≡ Cov(Yi, Zi − E[Zi|Wi, Xi])

Cov(Di, Zi − E[Zi|Wi, Xi])
= LATEZ (14)

LATEZ =

∫
MTE(u;w, x)ωZ(u;w, x)dudwdx (15)

βIV
W ≡ Cov(Yi,Wi − E[Wi|Zi, Xi])

Cov(Di,Wi − E[Wi|Zi, Xi])
= LATEW + LASEW (16)

LATEW =

∫
MTE(u;w, x)ωW (u;w, x)dudwdx (17)

LASEW =

∫
MSE(u;x)ωW (u;w, x)dudwdx (18)

Equation 14 and Equation 15 are the result from Heckman & Vytlacil (2005): linear
instrumental variables using the cost instrument estimates a local average treatment ef-
fect, which is a weighted average of marginal treatment effects. As Heckman & Vytlacil
(2005) show, these weights ωZ are nonparametrically identified, positive, and integrate
to 1. The new result is Equation 16: linear instrumental variables using the outcome
instrument estimates a local average treatment effect plus a local average surplus ef-
fect. The local average surplus effect is a weighted average of marginal surplus effects.
I show in Appendix B.2.1 that the LATEW and LASEW weights, ωW , are nonpara-
metrically identified, positive, and integrate to 1. This extends the result on the linear
model from Section 3.1 to a generalized Roy model with nonlinearities and selection on
heterogeneous treatment effects.

3.5.2 InterpoLATE-ing

There are multiple approaches in the literature to estimation of LATEW . First, non-
parametric bounds on LATEW using LATEZ are derived in Mogstad et al. (2017), by
considering the largest and smallest possible values of LATEW consistent with marginal
treatment effects that would result in estimating LATEZ . Second, if variation in treat-
ment effects is explained by observables, Angrist & Fernandez-Val (2010) show weighted
linear instrumental variables with the cost instrument can estimate LATEW . Third, one
could instead estimate marginal treatment effects directly using the cost instrument,
and recover an estimate of LATEW from the marginal treatment effects and an estimate
of the LATEW weights. Alternatively, Brinch et al. (2017) propose an approach to re-
covering marginal treatment effects from estimates of local average treatment effects,
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by imposing restrictions on outcome equations and flexibly modeling the distribution
of unobservable heterogeneity.

I build on Angrist & Fernandez-Val (2010), and assume that variation in local aver-
age treatment effects is explained by observables. Specifically, I partition Xi = (X̃i, Si),
and assume that local average treatment effects conditional on Si are homogeneous
estimated using Wi or Zi. Formally, define

LATE(·)|s =

∫
MTE(u;w, (x̃, s))ω(·)(u;w, (x̃, s))dudwdx̃∫

ω(·)(u;w, (x̃, s))dudwdx̃

to be the conditional local average treatment effect.24 I assume

Assumption 5a. LATEZ|s = LATEW |s ∀s ∈ Supp(Si)

Although this is a strong assumption, I show in Appendix B.1 that this still poten-
tially allows for arbitrary linear marginal treatment effects. This allows for “essential
heterogeneity” (Heckman et al., 2006), substantially weakening the assumption made in
Angrist & Fernandez-Val (2010), who assume these conditional local average treatment
effects are also equal to a conditional average treatment effect. The difference is while
their goal is to estimate the average treatment effect and other population moments,
my goal is to estimate LATEW , which requires a much weaker assumption.25

From the definition of the conditional local average treatment effect, it is clear
that LATEW is a weighted average of LATEW |s, and therefore LATEZ|s. It therefore
follows that LATEW can be estimated by weighted linear instrumental variables using
Zi. Letting ω(·)(s) ≡

∫
ω(·)(u;w, (x̃, s))dudwdx̃, this yields the following estimator of

LASEW .26

βIV
W − βWIV

Z = LASEW (19)

βWIV
Z ≡ Cov ((ωW (Si)/ωZ(Si))Yi, Zi − E[Zi|Wi, Xi])

Cov ((ωW (Si)/ωZ(Si))Di, Zi − E[Zi|Wi, Xi])
(20)

The difference between weighted linear instrumental variable estimators is a consistent
24In my empirical context, Si are a vector of state dummies; across state geographic heterogeneity

and policies are likely to explain a significant share of treatment effect heterogeneity.
25Note that this is still much stronger than assumptions made by Brinch et al. (2017) and Mogstad

et al. (2017). However, the estimator I propose is much simpler to implement. Additionally, in Section
5.2, I estimate a parametric version of the model from Section 3.2 that does not impose this assumption,
and estimates of this model suggest bias from violations of this assumption is small in my context.

26The proof of Equation 19 is in Appendix B.1.
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estimator of LASEW . Intuitively, the weights make the z compliers resemble the w

compliers on the observable Si.
Additionally, the ratio of the local average treatment effect to the local average

surplus effect estimated using weighted instrumental variables estimates a weighted
average of pseudo treatment effect elasticities of demand.

βWIV
Z

βIV
W − βWIV

Z

=

∫
ε(u;w, x)

(
ωW (u;w, x)MSE(u;x)∫

ωW (u;w, x)MSE(u;x)dudwdx

)
dudwdx (21)

This result follows straightforwardly from βWIV
Z = LATEW , and substituting the defini-

tion ε(u;w, x) = MTE(u;w,x)
MSE(u;x)

. The weights ωW (u;w,x)MSE(u;x)∫
ωW (u;w,x)MSE(u;x)dudwdx

are nonparametrically
identified, positive, and integrate to 1.

This estimator of a local average surplus effect may be underpowered, if there are
many w compliers but very few z compliers for some Si, but there is balance for other
Si. In Appendix B.2.2, I propose feasible reweighted instrumental variable estimators
using both z and w to minimize the variance of the resulting estimator of a local average
surplus effect; I refer to these estimators as βWIV

W and βWIV
Z . Additionally, estimating

ω(·), even under Assumption 5a, requires estimating the effect of w and z on adoption
conditional on Si = s, something I am underpowered for in my setting. Given this
constraint, I calculate these weights under the assumption that the first stages for w

and z (the derivatives of the propensity score conditional on Si = s with respect to w

and z) are constant across Si = s. However, the estimator is still consistent (although
no longer efficient) if the first stage for w is a constant multiple of the first stage for z
across Si = s.

3.5.3 ExtrapoLASE-ing

Just as with a local average treatment effect, a single estimate of a local average surplus
effect need not be policy relevant. I propose an approach similar to Brinch et al.
(2017), who use estimates of outcomes for always takers, compliers, and never takers
to recover the marginal treatment effect with a discrete instrument under parametric
assumptions. Instead, I recover the marginal surplus effect from estimates of local
average surplus effects. Recall that the local average surplus effect is a weighted average
of marginal surplus effects, and the weights ωW are identified. Furthermore, recall
that MSE(u;x) = u

fV (F−1
V (u;x);x)

E[Vγi|Ui < u,Xi = x]. Given this, with parametric
restrictions on MSE(u;x), implied by restrictions on the joint distribution of (Vγi , Vi)
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conditional on Xi = x, one can identify MSE(u;x) from local average surplus effects
and the weights they place on different marginal surplus effects.

In particular, I assume the marginal surplus effect is linear. Unlike a marginal
treatment effect, for many distributions a marginal surplus effect will have a 0 intercept,
and therefore a single parameter (the slope) is sufficient to characterize a linear marginal
surplus effect.27,28 A linear marginal surplus effect is therefore identified from a single
estimate of a local average surplus effect, and the weights ωW . Formally, I assume

Assumption 5b. MSE(u) = ku

Note that this assumption is neither necessary nor sufficient for linear marginal
treatment effects conditional on Xi = x, and allows for flexible nonlinearities in the
effects of the cost and outcome instruments on costs and potential outcome under
treatment, respectively, conditional on Xi = x. Under this assumption, estimation
of the marginal surplus effect from an estimate of the local average surplus effect is
straightforward.

k =
LASEW∫

uωW (u;w, x)dudwdx
(22)

In general, estimation of ωW (u;w, x) can be hard, even though it is nonparametri-
cally identified. I simplify the problem by estimating ωW (u;w, x) under the assumption
that E[Di(z, w;x)] is linear.

3.5.4 Parametric control function (“Heckit”)

Past work has developed control function approaches that could be used to estimate a
marginal surplus effect, including parametric (Heckman, 1979), semiparametric (Ahn
& Powell, 1993), and nonparametric approaches (Das et al., 2003). In fact, the natural
estimator of the marginal surplus effect building on the estimator of Das et al. (2003)
is asymptotically equivalent to a local instrumental variables estimator suggested by
Equation 12. However, the control function estimator is overidentified; this is because
it requires observations of E[Yi|Di,Wi, Zi, Xi] and E[Di|Wi, Zi, Xi], while the instru-
mental variable approach I propose only requires observations of E[Yi|Wi, Zi, Xi] and

27Specifically, bounded Vγi and the distribution of Vi not having fat tails are sufficient for the
marginal surplus effect to have a 0 intercept; this is a standard property of a Mills ratio.

28One parametrization that yields a linear marginal surplus effect is Vi ∼ Uniform[a, a+ k]|Xi = x,
and Vγi = 1 ∀i.
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E[Di|Wi, Zi, Xi]. Specifically, the exclusion restriction that Y0i is not a function of w is
more easily testable with more disaggregated data.

As an alternative to the instrumental variable approach to estimating a marginal
surplus effect presented previously, I consider a two step parametric control function
approach using a standard Heckman selection correction. As in Björklund & Moffitt
(1987), I assume idiosyncratic variation in (Y1i, C1i, Y0i) is jointly normally distributed.
Although the normality assumption appears restrictive, Kline & Walters (2017) show
that in many cases, parametric control function approaches exactly or closely match the
same moments as linear IV estimators, and thus produce identical or similar estimates
of local average treatment effects.

Assumption 5c. Y1i

C1i

Y0i

 ∼ N


 (gW + c0)Wi +X ′

iµ1

gZZi +X ′
iµC

c0Wi +X ′
iµ0


,

 Σ11 Σ1c Σ10

Σ1c Σcc Σc0

Σ10 Σc0 Σcc




Details of the estimation are in Appendix Section B.3. From the estimated model,
it is straightforward to calculate the marginal surplus effect; this calculation under
normality is similar to the expression for the treatment effect elasticity of demand
under normality in French & Taber (2011).

MSE(u;x) = σV u

φ(Φ−1(u))
(23)

where σV = Var(Vi), φ is the normal density function, and Φ is the normal cumulative
distribution function.

This parametric control function approach is a useful benchmark for the instru-
mental variable approach I propose. It also allows enables two additional tests of the
instrumental variable approach. First, it allows me to test the exclusion restriction
that Y0i is not a function of w. Second, it allows me to test the performance of the
weighted instrumental variable estimator. Specifically, I follow Andrews et al. (2018)
and calculate the informativeness of the weighted (and unweighted) instrumental vari-
able estimators of LASEW and LATEZ for the control function estimators of LASEW

and LATEZ , respectively.
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4 Empirical strategy

4.1 Notation and context specific concerns

Following Section 3.5 and the end of Section 3.5.2, but adapting to my empirical context,
I consider observations of (Yins, Dins, Zns,Wns, (Xns, Ss)) for each plot i, located in
district n in state s. Yins is plot i’s realized gross revenue. Dins is an indicator for
whether plot i is irrigated. Zns is plot i’s value of the cost instrument, its potential
aquifer yield. Wns is plot i’s value of the outcome instrument, its log relative potential
irrigated crop yield. Xns is a vector of controls for plot i, which in my main specifications
is log potential rainfed crop yield. Ss is a vector of state dummies.

The instruments, (Zns,Wns), and controls (Xns, Ss), are constant within district.
All analysis reports robust standard errors clustered at the district level.

In regressions using district level data, I observe area weighted average outcomes for
the district. I use Yns for average gross revenue per hectare, and Dns for share of land
irrigated at the district level. That Yns and Dns might vary across districts with the
same values of the instruments, even though we can treat Yns and Dns as population
averages within district, is consistent with the distribution of unobservables varying
across districts. The independence assumption therefore implies that instruments are
assigned across districts independent of this distribution.

In analysis using data from NSS ’12, I observe plot level data.29 Yins is now gross
revenue per hectare for plot i, and Dins is a dummy for irrigated. The sampling in the
Agricultural NSS was stratified on village level irrigation status, which is endogenous; as
a result, I use survey weights to recover unbiased estimates. To maintain comparability
with regressions using district level data, I also weight by plot size, and normalize
weights such that the sum of weights in each district is 1.

In analysis using Irr ’07, I use the negative of average fixed costs of irrigation
infrastructure per agricultural hectare as an outcome. This provides a useful check on
results from other datasets, as I discuss in Section 4.2.

29To be more precise, observations are at the level of household-by-crop-by-irrigation adoption,
which one can think of as aggregated across plots, proportional to area, on which households grow the
same crop and make the same irrigation adoption decision.
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4.2 Instrumental variables

My objective is to construct 2SLS estimators of the form in Equation 14 and 16. With
a large number of clusters, one could estimate the conditional expectations of Zns and
Wns nonparametrically. With the 222 districts I observe, I instead take a parametric
approach and assume E[Zns|Wns, Xns, Ss] and E[Wns|Zns, Xns, Ss] are linear conditional
on Ss. With this, I estimate by OLS

Yins = βRF
Z Zns + δ1sWns + δ2sXns + α1s + ε1,ins (24)

Dins = βFS
Z Zns + δ3sWns + δ4sXns + α2s + ε2,ins (25)

Yins = βRF
W Wns + δ5sZns + δ6sXns + α3s + ε3,ins (26)

Dins = βFS
W Wns + δ7sZns + δ8sXns + α4s + ε4,ins (27)

Note that coefficients on controls are allowed to vary by state s in all specifications.
Let βIV

Z = βRF
Z /βFS

Z , and βIV
W = βRF

W /βFS
W . I use βIV

W − βIV
Z as an estimate of a local

average surplus effect, and βIV
Z /(βIV

W −βIV
Z ) as an estimate of a pseudo treatment effect

elasticity of demand.
These estimators may be inconsistent if LATEW 6= LATEZ . I therefore also imple-

ment the weighted instrumental variable estimator constructed in 3.5.2; this estimator
will be consistent for a local average surplus effect and a pseudo treatment effect elas-
ticity of demand under Assumption 5a.

To validate the approach, I also use the negative of average fixed costs of irrigation
infrastructure per agricultural hectare as an outcome. This is consistent with the mod-
eling framework; as Björklund & Moffitt (1987) and Eisenhauer et al. (2015) note, there
is a duality between costs and benefits in the generalized Roy model; the difference is
only which is treated as observable. To expand briefly, we are using −qDiC1i as the
outcome instead of Yi, and Y1i − (1− q)C1i − Y0i as costs instead of C1i, where q is the
share of fixed costs in costs of irrigation times the discount rate (to convert infrastruc-
ture costs, which is a stock, into a flow); I assume q is constant. Instruments are now
switched: Wi becomes the cost instrument, and Zi becomes the outcome instrument.
Estimated marginal treatment effects are −q times marginal treatment effects, since
Y1i − Y0i = C1i for marginal agents. Estimated marginal surplus effects are q times
marginal surplus effects, since responses to increased surplus from decreased costs of
irrigation and increased surplus from increased gross revenue under irrigation are the
same. Therefore, the estimated pseudo treatment effect elasticity of demand (the ratio
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of the local average treatment effect to the local average surplus effect) when using
negative fixed costs as an outcome should be the negative of the estimate using gross
revenue as an outcome.30

4.3 Control function

To estimate the control function approach, I use NSS ’12, in which I observe plot level
data. This is crucial because this approach relies on observing average outcomes condi-
tional both on the values of the instruments and on adoption of treatment, something
the instrumental variables approach does not need. To separate differences in results
coming from different methods and different data sets, I first estimate a local average
surplus effect using linear instrumental variables in NSS ’12. I follow Section 3.5.4 in
estimating the control function approach. Controls include state fixed effects and their
interaction with log potential rainfed crop yield, but the cost instrument z and out-
come instrument w are not interacted with state fixed effects. Additional details of the
approach are in Appendix B.3.

5 Results

5.1 Instrumental variables

Table 2 presents unweighted instrumental variable regressions in Ag ‘07-’11. Columns
1 and 2 show a strong first stage with the cost instrument and the outcome instrument,
with t-statistics of 5.0 and 4.2, respectively. The instrumental variable coefficient in
Column 6, which uses the cost instrument, is a local average treatment effect. Marginal
irrigators increase their agricultural revenue by 22,600 Rs/ha when they adopt irriga-
tion. For ease of interpretation, the same specification with log revenue per hectare
as the outcome gives a coefficient of 0.95. This is similar to Duflo & Pande (2007),
who estimate an elasticity of production with respect to dam induced irrigation of 0.61,

30Note that imposing C0i = 0 is no longer a normalization in order for these interpretations of
results using fixed costs as an outcome to be valid. This creates two problems. First, it creates the
potential for exclusion restriction violations due to Zi affecting costs of rainfed agriculture. This is
not a concern in my context, since Zi affects the costs of extracting groundwater. Second, it affects
the interpretation of q. Assumptions that would imply q is constant are very strong, and likely require
all costs of irrigation to involve drilling for and pumping groundwater, ruling out irrigation reducing
growing season labor costs for rice cultivation, for example. I therefore interpret these results as
suggestive robustness.
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which they note is in the lower range of existing estimates. The instrumental vari-
able coefficient in Column 7, which uses the outcome instrument, is the sum of a local
average treatment effect and a local average surplus effect.

Table 3 presents instrumental variable and weighted instrumental variable estimates
used to recover a local average surplus effect and pseudo treatment effect elasticity of
demand; for compactness, each cell corresponds to a single regression. Columns cor-
respond to a single set of estimates, while rows correspond to estimators. Column 1
presents the same results as are in Table 2. Row 5 of Column 1 is the difference between
the IV estimator using the outcome instrument and the IV estimator using the cost
instrument, which estimates a local average surplus effect if the two local average treat-
ment effects (for cost instrument compliers and outcome instrument compliers) are the
same. The estimated local average surplus effect is 31,700 Rs/ha. To facilitate inter-
pretation, an estimate of the pseudo treatment effect elasticity of demand is presented
in row 6: the resulting point estimate is 0.72, although it is imprecisely estimated.

Column 2 presents results with the weighted instrumental variable estimator, which
corrects for potential bias from differences in shares of cost instrument and outcome
instrument compliers in different states. The estimated local average surplus effect with
this estimator, 49,800 Rs/ha, is larger (although not statistically significantly so), and
the estimated pseudo treatment effect elasticity of demand is similar.

Columns 3 and 4 present results with negative infrastructure costs as the outcome
using unweighted and weighted instrumental variables, respectively; as described in
Section 4.2, the roles of the instruments are now switched. The local average treatment
effect estimates imply marginal irrigation infrastructure costs of 59,100-86,900 Rs/ha.
Unlike estimates with agricultural productivity as an outcome, these instrumental vari-
able estimates are economically significantly different from OLS estimates, consistent
with unobservable heterogeneity in costs of irrigation driving selection.31 Although in-
terpreting the local average surplus effect estimates is difficult, following the reasoning
in Section 4.2, pseudo treatment effect elasticity of demand estimates should be the
negative of estimates using agricultural productivity as an outcome. Estimates of this
elasticity using infrastructure costs are statistically and economically indistinguishable
from estimates using agricultural productivity, but are much more precisely estimated.
The estimates imply a 1% increase in the gross returns to irrigation causes a 0.7%

31The difference is not statistically significant (for the Hausman test, p = 0.12 for unweighted IV
and p = 0.13 for weighted IV), so I interpret this difference as potentially suggestive of selection on
unobservable heterogeneity in costs of irrigation.
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increase in adoption of irrigation, times a bias term equal to the ratio of gross returns
for average irrigators to gross returns for marginal irrigators.

5.2 Control function

Before estimating key model parameters using a two step control function approach,
I first compare instrumental variable estimates of the local average surplus effect in
NSS ’12, on which the control function approach is implemented, to the estimates
from Ag ’07-’11. The estimate of the local average surplus effect in Column 1 on
Table 4 is similar, but noisier; I interpret this to mean direct comparisons of control
function estimates using NSS ’12 to instrumental variable estimates using Ag ’07-’11
are reasonable, although they should still be made with caution.

I present the estimated coefficients from the control function approach in Table 5.
A few things to note. First, the estimated effect of the outcome instrument on po-
tential revenue under rainfed agriculture, c0, is not significantly different from 0, so
the overidentification test fails to reject. Second, the estimated standard deviation of
idiosyncratic profitability of irrigation of 25,800 Rs/ha, σV , is large: as reference, the ob-
served standard deviation of agricultural revenue per hectare is 26,100 Rs/ha, although
these two measures need not be similar. Third, the selection terms are imprecisely esti-
mated, although there is potentially suggestive evidence that there is selection on costs,
consistent with the differences between instrumental variables and OLS estimators with
fixed costs as the outcome in Section 5.1.

To compare the control function approach to the instrumental variable approach,
Column 3 of Table 4 shows estimates of LATEZ , LATEW , and LASEW from the con-
trol function approach, along with bias from violations of the exclusion restriction.32

The local average surplus effect, 54,300 Rs/ha, is larger than estimates from either in-
strumental variable method and is more precisely estimated. The estimated bias from
differences between local average treatment effects is small, at -3,300 Rs/ha. The es-
timated bias from violations of the exclusion restriction is also small, at 4,600 Rs/ha.
These biases happen to offset, and the total bias in the instrumental variable estimator
of the local average surplus effect is just 1,200 Rs/ha.

However, just because the control function estimates imply the linear IV estimator
has a small bias in this case does not mean it is a good estimator of a local average
surplus effect. To judge this, I follow Andrews et al. (2018) and calculate the informa-

32I discuss the construction of these in Section B.3.
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tiveness of the IV and WIV estimators of LATEZ and LASEW for the equivalent control
function estimates. This does not capture bias, which is small in this context but need
not be in others, but does capture the extent to which structural estimates of LATEZ

and LASEW are explained by IV estimators. Kline & Walters (2017) note that in many
cases, IV and structural estimates of LATEZ are numerically equivalent, which would
yield an informativeness of 1; I therefore use the informativeness of IV estimates of
LATEZ for structural estimates of LATEZ as a benchmark. Table 6 shows these mea-
sures. The IV and weighted IV estimators of LATEZ both have high informativeness
of structural estimates (0.51 and 0.46, respectively). The IV estimator of LASEW has
a low informativeness of the structural estimator (0.12). However, the WIV estimator
of LASEW has an informativeness of the structural estimate that is similar to that of
IV estimates of LATEZ for structural estimates of LATEZ (0.50). I interpret this as
evidence that the instrumental variable approach is, at the least, a useful complement
to traditional structural approaches one could use to estimate marginal surplus effects,
as the two approaches should yield similar results.

5.3 MSE

Estimated marginal surplus effects and local average surplus effects for the instrumental
variable estimator (in Ag ’07-’11), the weighted instrumental variable estimator (in Ag
’07-’11), and the control function estimator (in NSS ’12) are presented in Figure 3.
The instrumental variable estimates of marginal surplus effects are constructed from
the local average surplus effect estimates as described in Section 3.5.3. The control
function estimate of the local average surplus effect is constructed from the marginal
surplus effect estimate as described in Section 3.5.4. First, note that although the
weighted IV local average surplus effect is 57% larger than the IV estimate, the weighted
IV marginal surplus effect is only 30% larger. This is because the weighted IV local
average surplus effect places more weight on larger margins of adoption, where marginal
surplus effects will typically be larger (and are by assumption with the functional forms
I use). Second, the control function estimate of the marginal surplus effect is larger than
the IV estimate, but it is close to the WIV estimate over empirically relevant margins
of adoption. As a result, for counterfactual exercises, I pick the “median” of the three
estimates and use the WIV estimate of the marginal surplus effect. Third, note that
distributional assumptions can have a large impact on estimates of the marginal surplus
effect when extrapolating outside of frequently observed margins of adoption.
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5.4 Groundwater depletion and rural surplus

With an estimate of the marginal surplus effect, we can calculate the effects of declining
water tables on surplus. To do so, with the marginal surplus effect it is sufficient to
have an estimate of the impact of declining water tables on adoption of irrigation. Let
b be the depth to water table in meters. I calibrate dE[Di]/db = −.0024/m based on
estimates from Fishman et al. (2017), which I assume to be constant.33 This yields

dE[πi]

db
= MSE(E[Di])

dE[Di]

db

I use this approach to calculate the impact of declining water tables on economic
surplus, and report estimates in Table 8. Column 1 reports estimates of the impact of
a 1m decline in water tables on economic surplus in Rs/ha. The WIV marginal surplus
effect implies a 1m decline in water tables reduces surplus per irrigated hectare by 172
Rs, or 0.7% of agricultural productivity per hectare in India in 2009. Across monitoring
wells in India, one standard deviation of depth to water table is 15.4m, implying a one
standard deviation increase in depth to water table would cause a loss of surplus per
irrigated hectare equal to 10.8% of 2009 Indian agricultural productivity per hectare.

To assess the plausibility of this estimate, I do an alternative calculation. Instead, I
ask how much farmers’ private electricity costs of pumping groundwater would increase
if depth to water table fell by 1m; an appeal to the envelope theorem suggests this is a
direct loss of surplus for farmers. I then scale this up by the inverse share of electricity
costs in costs of declining water tables; I consider values of 3 and 6 for this.34 The IV
and weighted IV estimates of the marginal surplus effect are 4.3 and 5.5 times larger
than the increase in farmers’ private electricity costs of pumping groundwater from a
1m decline in water tables, respectively. I interpret this as validation of that these
estimates are reasonable to use for the remaining counterfactuals.

33This, and all other calibrated parameters used in counterfactual exercises, are in Table 7.
34I calculate this share in two ways. For the first approach, I begin by noting that, on the margin,

costs of adopting irrigation should equal benefits. I therefore use the IV LATE for the cost instrument
on agricultural productivity as a measure of the costs of adopting irrigation. Next, I assume that the
share of electricity costs in costs of declining water tables equals one minus the share of irrigation
infrastructure in costs of adopting irrigation. Lastly, I use the IV LATE on fixed costs as a measure
of fixed costs of adopting irrigation. To convert this to a flow, I multiply by 0.2, a common interest
rate on credit in India (Hussam et al., 2017). This calculation yields an electricity cost share of 0.5.
Alternatively, I assume that only fixed costs and electricity costs increase when water tables decline,
and I assume they do so in proportion to their aggregate shares. I calculate the share of fixed costs
using the approach above, and I calibrate electricity expenditures per irrigated hectare at 1,470 Rs/ha.
This calculation yields an electricity cost share of 0.12. These yield a range of 2 to 8.
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Next, I use the estimated marginal surplus effects, or local average surplus effects,
to calculate the lost surplus from declining water tables in Haryana, Punjab, and Ra-
jasthan, from 2000-2010, as estimated by Rodell et al. (2009). My preferred estimate,
using the WIV marginal surplus effect, finds lost surplus of 365 Rs/ha, or 1.16% of
agricultural productivity per hectare in northwest India. Other estimates range from
251 to 430 Rs/ha, while back of the envelope calculations scaling increased electricity
costs are 197 and 395 Rs/ha.

6 Robustness

I present an analysis of robustness of the estimated local average surplus effect here.
Sections 6.1, 6.2, and 6.3 discuss the exclusion restrictions that the outcome instrument
does not affect costs, that the outcome instrument does not affect potential revenue un-
der rainfed agriculture, and that the cost instrument does not affect potential revenue,
respectively. Section 6.4 discusses potential violations of the weak separability assump-
tion. Section 6.5 discusses endogenous attrition, or that the instruments may increase
gross cultivated area.

6.1 Wn 6⇒ C1i

The outcome instrument Wn might affect costs of agriculture if farmers reoptimize in
response to increases in potential revenue under irrigation, and increase expenditures
on inputs conditional on irrigating. If this is the case, direct effects on potential revenue
driven by Wn may be the sum of increases in surplus and increases in costs; any such
increases in costs are an exclusion restriction violation. To test this, in Column 4 of
Table 4, I use household level data on agricultural input expenditures from NSS ’12 as
the outcome, and I compare instrumental variable estimates using the cost instrument
Zn and the outcome instrument Wn of the effect of irrigation Dn. Additionally, the cost
instrument Zn should have a direct effect on input expenditures related to pumping
groundwater, so I exclude these.35 This is a standard overidentification test: both Zn

and Wn should be valid instruments for the effect of irrigation on agricultural inputs
excluding direct expenditures on irrigation if farmers do not reoptimize. Row 5 shows

35Specifically, I drop the categories ”Diesel”, ”Electricity”, and ”Irrigation”. While one might be
tempted to use these categories to construct a measure of agricultural profits, they crucially do not
include depreciation of irrigation infrastructure.
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I fail to reject this overidentification test, and the estimate is a precise 0.
Alternatively, the outcome instrument may affect direct costs of irrigating through

falling water tables. The outcome instrument should cause increases in extraction of
groundwater, which would cause water tables to fall, which in turn will increase costs
of irrigation. I test for this in Table 9. In Columns 6 and 7 of the first subtable, I fail to
reject the null of no depletion caused by increases in irrigation caused by Wn. However,
the coefficients are not small: they suggest a fully irrigated district has water tables
that are 18m deeper than a district with no irrigation (1.2 standard deviations of depth
to water table across monitoring wells), and depletion is 2m/year faster. However,
this will not meaningfully bias my estimates: multiplying 18m by the 172 Rs/ha cost
increase caused by a 1m fall in water tables, this implies that costs increased by 3,110
Rs/ha, which is less than 10% of my estimates of the local average surplus effect.

6.2 Wn 6⇒ Y0i

The outcome instrument Wn might affect potential revenue under rainfed agriculture;
it is constructed using FAO GAEZ data on predicted relative yields under irrigated
agriculture. This is negatively correlated with predicted yields under rainfed agricul-
ture, as places with high returns to irrigation typically have low yields under rainfed
agriculture. I address this in two ways. First, I consider including more or less flexible
controls for FAO GAEZ potential rainfed crop yield. All primary specifications include
controls for state fixed effects interacted with potential rainfed crop yield, I compare
this baseline specification to specifications with alternative controls in Table 10. First,
Column 2 shows a specification with no controls. The estimated local average surplus
effect is biased downward, as relative potential irrigated yields are negatively correlated
with rainfed yields. Columns 3, 4, 5, and 6 include progressively more flexible controls,
with controls in my preferred specification (in Column 1) falling between Column 4
and Column 5. Estimates of the local average surplus effect range from 39,600 Rs/ha
to 56,900 Rs/ha, compared to 31,700 Rs/ha with unweighted instrumental variables,
although the precision begins to decrease as more controls are added.

Alternatively, the effect of the outcome instrument on rainfed yields is identified.
Flexible models which allow for this in Ag ’07-’11 are underpowered, but the control
function approach I implement in NSS ’12 is sufficiently powered to test this under
more parametric restrictions. I implement this overidentification test in Row 2 of Table
5; I fail to reject the outcome instrument has no effect on rainfed yields, and the 0 is
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small and precise. I assess the magnitude of bias from exclusion restriction violations in
Table 4, Column 3: the bias in instrumental variables from violations of the exclusion
restriction is estimated to be 4,600 Rs/ha, less than 10% of the control function estimate
of the local average surplus effect.

6.3 Zn 6⇒ (Y0i, Y1i)

The cost instrument Zn decreases costs of groundwater irrigation by enabling lower
cost tubewell irrigation. In India, prior to the Green Revolution, almost no agricultural
land was irrigated using tubewells, so the cost instrument should have no effect on
irrigation or agricultural revenue before the start of the Green Revolution. I estimate
a difference in difference specification in Table 11, comparing coefficients on the cost
instrument Zn, the outcome instrument Wn, and the rainfed yield control logRF yieldn,
along with their interactions with a post Green Revolution start dummy.36 To facilitate
comparison across years, I use log agricultural productivity instead of its level. The cost
instrument has no significant effects on irrigation or agricultural productivity before the
Green Revolution, when tubewells are not available as a technology. In contrast, the
outcome instrument increases revenue even before the Green Revolution, as other forms
of irrigation were already available as a technology. However, the outcome instrument
has limited effects on adoption of irrigation: increases in the returns to irrigation have
a small effect on adoption of irrigation when there is large variation in the costs of
irrigation, as was the case before the expansion of tubewell irrigation.

Alternatively, the cost instrument Zn might affect potential revenue directly if farm-
ers reoptimize in response to decreases in costs of irrigation, and increase expenditures
on inputs conditional on irrigating. To some extent, Column 4 of Table 4 should alle-
viate those concerns, as effects of the cost instrument on input expenditures are small.
However, I explicitly excluded any expenditures specific to irrigation, as the cost instru-
ment should have direct negative effects on these. Additionally, that the magnitudes of
the LATE estimates in Columns 1 and 2 of Table 3 are reasonable should alleviate con-
cerns of large bias, but given the limited precision with which they are estimated, this
is also insufficient. To construct a test for reoptimization, I argue that if falling costs
of irrigation cause farmers to reoptimize, we should see shifting of crop choice under
irrigation towards water intensive crops; this appears as a violation of monotonicity,
where the instrument decreases area irrigated under crops with low water intensity. I

36I follow Sekhri (2014) and define 1966 to be the start of the Green Revolution.
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test for this in Table 12. Because I test for effects on every crop in the data, I adjust
inference for multiple hypothesis testing; after this adjustment, no monotonicity viola-
tions are detected. Decreases in costs of irrigation cause shifts away from rainfed rice,
maize, and wheat, and into irrigated rice.

6.4 Weak separability

In general, monotonicity with multiple instruments is a much stronger assumption than
monotonicity with a single instrument. This is equally true here: through the lens of
the model, it requires farmers can only differ in their responsiveness to the instruments
through Vγi. This is violated if some farmers’ surplus under irrigation is relatively more
responsive to the cost instrument. I consider likely violations of this in this section.

The clearest violation of monotonicity is the presence of surface water. Farmers
with access to surface water will not have their costs of irrigation respond to the cost
instrument, since they will irrigate using surface water even if their costs of pumping
groundwater fall. However, these farmers will still respond to the outcome instrument,
since their revenue under irrigation will still shift up. Let Surfacei be a dummy for
access to surface water. To see how this violates monotonicity, one can write this
modified model as

Y1i(w) = VγiγW (w) + V1i

C1i(z) = (1− Surfacei)VγiγZ(z) + VCi

Y0i = V0i

I take two approaches to handling this. First, I drop states where more than one third
of irrigation is surface water, and present results in Column 2 of Table 13. States with
large shares of surface water may bias up estimation of a local average surplus effect, if
the outcome instrument increases revenues in those states but does not affect adoption
of irrigation. The estimated local average surplus effect restricted to states with low
shares of surface water is in fact slightly larger, suggesting such bias is not large in this
context.

Second, I take a more model driven approach. I make the additional assumption that
Surfacei ⊥ (Wi, Zi, V1i, VCi, V0i, Vγi)|Xi, or that access to surface water for irrigation is
exogenous conditional on the controls Xi. Additionally, I assume that everyone with
access to surface water irrigates. This latter assumption I test: I show in Columns 1 and
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2 of Table 9 that the outcome instrument (in the first subtable) and the cost instrument
(in the second subtable) cause significant increases in groundwater irrigation, but not
surface water irrigation. Under these assumptions, all results on estimation still hold,
but when conducting counterfactuals using the local average surplus effect that affect
only groundwater, it must be scaled down by the share of groundwater in irrigation.
When I applied the local average surplus effect to estimation of the welfare losses from
falling water tables in Section 5.4, the estimate of the effect of falling water tables on
groundwater irrigation I use was from communities without access to surface water
irrigation. On the other hand, when I use the local average surplus effect to recover
an estimate of the elasticity of irrigation to the price of electricity, I must account for
having estimated the local average surplus effect nationally, where the groundwater
share of irrigation is 0.66.

6.5 Attrition

An addition concern is attrition: when costs of irrigation fall, some farmers will shift
from rainfed agriculture to irrigated agriculture, but land that was fallow will also
become irrigated, and farmers may begin to multiple crop. This constitutes endogenous
selection into the sample. To account for this, I allow land to shift from either rainfed
agriculture or fallow into irrigated agriculture in response to the instruments. Instead
of looking at the share of agricultural land that is irrigated, I look at the share of
district land that is irrigated. However, I do not observe the reservation rent on fallow
land, or the gross revenue under rainfed agriculture that land would need to yield in
order to be cultivated. However, an extended model implies that selection out of fallow
should be the same in response to the outcome instrument and the cost instrument,
so I test robustness of the results to imputation of a range of reservation rents; I use
both 0 Rs/ha and 20,000 Rs/ha (just under the average revenue per hectare on rainfed
plots in NSS ’12). The results of this exercise are in Columns 3 and 4 of Table 13.
The estimated local average surplus effect is smaller, but not significantly different, and
does not depend on the choice of reservation rent.

7 Optimal policy

In Section 5.4, I calculated the lost surplus per hectare from a one meter decline in the
water table. I now apply this estimate to optimal policy for groundwater subsidies. As
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discussed in Section 2.1, irrigation is implicitly subsidized in India through subsidies
for electricity for pumping groundwater. Although there is not volumetric electricity
pricing, pump capacity fees implicitly price electricity at an average of one third of
marginal cost (Fishman et al., 2016; Badiani & Jessoe, 2017). Following Allcott et al.
(2014), I consider a policy maker maximizing social surplus in choosing how to set
pump capacity fees. Despite deadweight loss, subsidies may be optimal because the
policy maker has a preference for redistribution, and is willing to spend λ > 1 Rs to
transfer 1 Rs to farmers, a stated motive behind electricity subsidies (Dubash, 2007).37

However, the impacts of marginal pumping induced by the subsidy on depth to water
table of other farmers are not internalized by farmers increasing their pumping. This
negative externality, and the deadweight loss from the subsidies, must be traded off by
the social planner against the value of the subsidies as a transfer.

In Section 7.1, I model the planner’s problem, and in Section 7.2, I discuss calibration
of key parameters, including the marginal surplus effect. In Section 7.3, I use the
model to calculate the gains from decentralizing the setting of pump capacity fees in
Rajasthan. Rajasthan is in northwestern India, where I estimated the lost surplus
from declining water tables in Section 5.4, and relative to other states in the region
has greater heterogeneity of aquifer characteristics, and therefore in the magnitude of
the negative externality. I quantify potential gains from reducing relative subsidies in
districts with large negative pumping externalities.

7.1 Planner’s problem

I model groundwater irrigation closely following Shah et al. (1995). In period t, farm-
ers have access to an available stock of groundwater, St, from which they can pump
groundwater for irrigation. If farmer i irrigates (Dit = 1), they receive revenue Y1i(ait)

and incur costs C1i(ait;St), where ait is quantity of water farmer i would extract to
maximize surplus conditional on irrigating in period t. If farmer i does not irrigate,
they receive revenue Y0i. Costs C1i(ait;St) include fixed costs ki(St), linear electricity
costs mi(St)ptait, where pt is the price per kWh in period t, and other linear variable
costs ci(St)ait. Farmers are atomistic, in that farmers do not internalize any impact
their extraction ait has on the available stock of groundwater St. Farmers maximize

37Whether the policy maker is justified in acting as if λ > 1 is a question beyond the scope of this
paper, but for electricity subsidies λ > 1 may be efficient if other transfers to farmers create greater
deadweight loss (Hendren, 2014) or have high leakage (Niehaus & Sukhtankar, 2013).
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surplus πi by solving

πi =

∫ T

0

e−rt max
ait,Dit

DitY1i(ait)−Dit ((ci(St) +mi(St)pt)ait + ki(St))︸ ︷︷ ︸
C1i(ait;St)

+(1−Dit)Y0i

 dt (28)

I make a few additional realistic assumptions on electricity use and groundwater
extraction. I model the evolution of the stock of groundwater simply; it falls by one unit
per unit of extraction, so Ṡt = At ≡

∫
Ditaitdi. To extract a unit of water, the electricity

required mi(St) = (hi+b(St))m, where hi+b(St) is the depth to groundwater for farmer
i. The electricity requirement per unit of water per meter of depth to groundwater,
m, is simply the energy required to lift one unit of water by one meter divided by
the pump efficiency. The global component of depth to groundwater, b(St) = St/αL,
where α is the specific yield of the aquifer (the fall in the water table per unit of
groundwater extracted), and L is the area of the aquifer in hectares; as a result, when
one meter hectare of groundwater is extracted, farmers experience an increase in depth
to groundwater of 1/αL meters.

The social planner chooses pt, the price of electricity charged to farmers, to maximize
social surplus. Social surplus is total farmer surplus times λ plus profits from the
electricity sector. Total agricultural electricity use in period t is Mt ≡

∫
Ditmi(St)aitdi,

and the cost of producing a unit of electricity is ct. The social planner solves

max
p

V (p) ≡ λ

∫
πidi+

∫
e−rt(pt − ct)Mtdt (29)

I make three additional simplifications. First, I ignore rebound effects, where in-
creases in the price of electricity today, by reducing extraction of groundwater, increase
the available stock of groundwater, which reduces future costs of extraction and in turn
increases future extraction. I further assume that current extraction is a good approx-
imation of future extraction. In fact, extraction is growing (Rodell et al., 2018). These
two simplifications have offsetting effects: rebound implies externalities are smaller than
I estimate, while growing extraction implies externalities are larger than I estimate. I
anticipate that these biases are small, as my calibrated elasticity is low (which reduces
the bias from ignoring rebound) and my calibrated discount rate is high (which reduces
the bias from ignoring rebound and growth in extraction). Third, I assume that cur-
rent costs of electricity generation and electricity subsidies are a good approximation of
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future costs and subsidies. This is difficult to know, but I consider it a natural starting
point for analysis.

I consider the social planner’s first order condition for social surplus maximization
with respect to the period 0 price of electricity. When writing the social planner’s
first order condition, I normalize by total electricity use M0, and multiply by -1; this
normalized first order condition can be interpreted as changes in social welfare per rupee
of surplus transferred to farmers. I follow the public economics literature and express
this first order condition in terms of reduced form sufficient statistics (Chetty, 2009).
I define εM,p to be the elasticity of electricity use to the price of electricity, and εA,p to
be the elasticity of groundwater extraction to the price of electricity.

− 1

M0

dV (p)

dp0
= λ− 1︸ ︷︷ ︸

Transfer value

− εM,p
p0 − c0

p0︸ ︷︷ ︸
DWL

− λ

r
εA,p

(L/αL)

Farmer cost of 1m fall in water table/ha︷ ︸︸ ︷
(∂E[Di0]/∂b0)MSE(E[Di0])

p0M0/A0︸ ︷︷ ︸
Pumping externality (farmer)

− 1

r
εA,p

(L/αL)

Utility cost of 1m fall in water table/ha︷ ︸︸ ︷
(p0 − c0)(mA0/L)

p0M0/A0︸ ︷︷ ︸
Pumping externality (utility)

(30)

I consider each term in Equation 30. The first term, λ − 1, is the value the social
planner places on shifting one rupee from public funds to farmers. The second term,
−εM,p

p0−c0
p0

, is the standard deadweight loss term. It is the elasticity of electricity use
to the price of electricity times a term that captures the distortion from subsidies.

The third term, λ
r
εA,p

(L/αL)(∂E[Di0]/∂b0)MSE(E[Di0])
p0M0/A0

, is the pumping externality experi-
enced by farmers per Rs of transfer. It is scaled by λ, because changes in farmer surplus,
whether from transfers or increased pumping costs from externalities, are valued the
same by the social planner. It is scaled by 1

r
, because while transfers are experienced

immediately, and deadweight loss is based on the farmer’s static optimization, the ex-
ternality from a unit fall in the water table is experienced indefinitely by all farmers.
It is scaled by εA,p because the externality caused per rupee of transfer is proportional

to the extraction caused per rupee of transfer. The remainder
(L/αL)

∂E[Di0]

∂b0
MSE(E[Di0])

p0M0/A0

captures the distortion. The numerator is the externality per unit of water extracted,
and equals the fall in water table experienced by farmers per unit of water extracted
L/αL times the lost farmer surplus per unit fall in the water table ∂E[Di0]

∂b0
MSE(E[Di0]).

The denominator is the electricity cost per unit of water extracted, p0M0/A0. The full
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term 1
r
εA,p

(L/αL)
∂E[Di0]

∂b0
MSE(E[Di0])

p0M0/A0
, is the externality ratio, or the Rs of externality created

per Rs of surplus transferred to farmers.
The fourth term, 1

r
εA,p

(L/αL)(p0−c0)(mA0/L)
p0M0/A0

, is the pumping externality experienced
by the utility per Rs of transfer. The utility experiences the externality because
of the wedge between the price farmers pay for electricity and the marginal cost of
generation. It is scaled by 1

r
, εA,p, and inversely proportional to p0M0/A0 for the

same reasons the pumping externality experienced by farmers is. The numerator,
(L/αL)(p0 − c0)(mA0/L), is lost profits experienced by the utility per unit of water
extracted caused by the increase in electricity required to pump groundwater caused by
falls in the water table. The wedge p0 − c0 is the future difference between the price of
electricity and the marginal cost of generation, as the increased electricity use caused
by the externality occurs indefinitely.

7.2 Calibration

I discuss a few key aspects of the calibration. Note that all parameters used in the
calibration are in Table 7.

First, I take two approaches to calibrating εA,p and εM,p. In both cases, I assume
electricity use for extracting groundwater is a constant proportion of extraction, so
εA,p = εM,p. This need not hold in the model above, in the presence of heterogeneity in
responsiveness to the price of electricity that is correlated with idiosyncratic depth to
groundwater hi. For the first approach, I use an estimate from Badiani & Jessoe (2017),
εA,p = −0.18. For the second approach, I use my preferred estimate of a local average
surplus effect to calculate this elasticity; the inverse of a local average surplus effect
is a semielasticity of irrigation to its gross returns. I calculate εA,p = −0.045.38 This
estimate is likely to be biased downwards, since it ignores intensive margin responses
of extraction to changes in the subsidy. I therefore interpret it as a lower bound, and I
show estimates using both εA,p = −0.18 and εA,p = −0.045.

Second, the numerator of the externality ratio, (L/αL)(∂E[Di0]/∂b0)MSE(E[Di0])

can be decomposed into the product of three terms. The first, 1/α, is the inverse specific
yield of the aquifer, or the total fall in the water table per unit of water extracted.
The second, LE[Di0]/L is the share of the aquifer that is irrigated; this captures the

38Specifically, I approximate εA,p ≈ p0M0/E[Di0]L
0.66LASE , where 0.66 is the groundwater share of irrigated

land. I use LASE = 49,800 Rs/ha, and electricity expenditures per irrigated hectare by farmers of
p0M0/E[Di0]L = 1,470 Rs/ha.
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fraction of a fall in the water table experienced by farmers. These first two terms
will vary across aquifers, which may fall within district or cross district boundaries.
For this exercise I assume each district is a single, contiguous aquifer; however, with
more granular data, this exercise is straightforward at the aquifer level. The third,
(∂E[Di0]/∂b0)(MSE(E[Di0])/E[Di0]), is the lost surplus per irrigated hectare per unit
fall in the depth to groundwater. My preferred estimate of this is 172 Rs/ha/m in Table
8, which I use for this exercise.

Third, calculating m, the electricity needed to pump one unit of groundwater one
meter, is a simple physics problem which depends only on the depth to water table and
the efficiency of extraction. Shah (2009) suggests 40% is a reasonable efficiency in the
Indian context. Further, I assume thatM0 = A0b0m, or that electricity use for irrigation
is groundwater extraction times depth to groundwater times the electricity needed to
pump one unit of groundwater one meter.39 This calculation yields total agricultural
electricity use that is 36% of reported electricity use. I assume this difference is driven
by depth to water table in farmers’ wells being significantly deeper than the depths to
water table in India’s monitoring wells. I scale up my estimates of electricity use M0

by a constant proportion across districts to match this total.
Fourth, a key decision is which parameters I allow to vary across districts. In this

exercise, I focus on heterogeneity in optimal subsidies that stems from variation in
the magnitude of the pumping externality. I therefore allow the key parameters which
determine the pumping externality to vary: the average specific yield, the depth to water
table, and the irrigated share of land. The externality ratio is inversely proportional,
inversely proportional, and proportional to each of these parameters, respectively. I
do a variance decomposition of the log externality ratio across districts: 11% of the
variation is attributed to specific yield, 52% is attributed to irrigated share of land, and
37% is attributed to depth to water table.40

Fifth, for counterfactuals, a necessary decision is to determine which parameters
are permitted to respond endogenously to changes in the policy, and which are not.
The only parameters I allow to vary in response to changes in p are A0, the total
extraction of groundwater in the current period, and E[Di], the irrigated share of the
aquifer. For both, I use εA,p as the relevant elasticity. As mentioned previously, I

39Depth to groundwater is measured using the median depth to groundwater by district across
monitoring tubewells in Well ’95-’17

40The externality experienced by the utility varies with the extraction of groundwater per irrigated
hectare by district, which I also allow to vary. Setting this to the average extraction across districts
does not meaningfully change any results, so I do not emphasize it.
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ignore rebound; equivalently stated, I do not allow farmers to respond to changes in
depth to water table bt, but I do calculate the changes in rates of depletion implied by
the changes in A0. Additionally, I undertake the analysis as if the policy change were
permanent; future decreases in E[Di] caused by increases in electricity prices reduce
negative externalities, and future increases in pt − ct caused by increases in electricity
prices reduce the negative externality on the utility. Both of these effects reduce the
magnitude of optimal variation in subsidies relative to ignoring these responses. In
sum, this represents a compromise between a full numerical simulation of the model, as
would be standard in the optimal control literature, and the simpler sufficient statistics
approach I undertake, and I leave I comparison of my approach to a full numerical
simulation to future work.

Sixth, for aggregating across districts, it is necessary to know district specific levels
of extraction A0 at baseline subsidy levels; I collect this data from district ground-
water brochures from the Central Ground Water Board, which estimate groundwater
withdrawals in each district in an idiosyncratic year ranging from 2004 to 2011, with a
modal year of 2008.

Seventh, I make two sample restrictions for districts for the counterfactual exercise.
First, I only use districts for which depth to water table, district irrigated land share,
and average aquifer specific yield are available; this brings me from 24 districts in
the main analysis to 22. Second, I drop districts where more than 7% of irrigation
uses surface water. In districts with high levels of surface water irrigation, optimal
policy requires a different set of considerations: surface water irrigation has positive
externalities, as it causes recharge of groundwater, and surface water and groundwater
irrigation may be substitutes. This reduces the set of districts from 22 to 14.

7.3 Results

Figure 4 presents the optimal district specific electricity taxes in Rajasthan. To cal-
culate optimal taxes, I first calibrate the social planners willingness to pay to increase
farmer surplus by 1 unit, λ, under the assumption current policy is optimal subject to
the constraint that there is a single subsidy at the state level, which yields λ = 1.56.
Note that this λ is just the inverse marginal value of public funds; as a reference, this
is similar to the inverse marginal value of public funds for SNAP, a public assistance
program in the United States, as calculated in Hendren (2016).

Panel (a) presents the optimal tax by district. The optimal tax is relatively low in

44



districts in northwestern Rajasthan, which tend to have lower land shares of irrigation,
cultivating bajra instead of more water intensive wheat and maize, lower depths to water
table, and higher specific yields, and therefore relatively small pumping externalities.
Panel (b) presents the externality ratio and deadweight loss in each district as a function
of the electricity tax. First, note that negative externalities are almost triple deadweight
loss in the highest externality district, but close to 0 in other districts. Second, current
subsidy levels reduce farmer surplus on the margin in the district with the largest
pumping externalities, as the marginal pumping induced by current levels of subsidies
in that district reduces farmer surplus by more than their value as a transfer.

Table 14 presents results for total subsidies, deadweight loss, farmer surplus, and
groundwater depletion, all relative to a no subsidy policy, under three scenarios. Col-
umn 1 presents the status quo. Total subsidies equal 6.6% of agricultural production,
but deadweight loss from the subsidies is 0.65% of agricultural production, despite the
high subsidy level. This follows from the low estimate of the price elasticity of electricity
demand in agriculture I use from Badiani & Jessoe (2017). Externalities experienced
by the utility are small relative to externalities experienced by farmers, as despite the
high subsidies, electricity for pumping groundwater is a low share of costs of falling
water tables. Negative pumping externalities induced by subsidies are meaningful, at
0.45% of agricultural production, but smaller than deadweight loss; however, this masks
substantial heterogeneity. Additionally, subsidies were responsible for declines in water
tables of 1.51m from 2000-2010, 46% of the observed decline in northwestern India.

Column 2 of Table 14 presents a scenario where the social planner chooses district
specific subsidies to maximize social welfare under the same λ that implies the policy
in Column 1 is the optimal state level policy, while holding total subsidies fixed. This
policy involves increasing subsidies in districts with small pumping externalities, while
decreasing subsidies in districts with large pumping externalities. First, note that this
policy increases deadweight loss: this follows from the constant elasticity assumption,
which implies a constant subsidy across locations minimizes deadweight loss holding
fixed total subsidy payments. However, the increased deadweight loss is smaller than
the decrease in negative pumping externalities. Negative externalities relative to the
no subsidy policy fall by 25%, the total distortion relative to no subsidy falls by 7%,
and the effect of subsidies on depth to groundwater decreases by 16%. However, total
farmer surplus increases by only 0.07% of agricultural production.

Columns 4 and 6 present equivalent exercises, but using a lower calibrated elasticity
(0.045) and a lower calibrated discount rate (0.08), respectively. Focusing on Column 4,

45



the lower elasticity implies the inefficiency from subsidies is small: the λ which implies
current policy is the optimal state level policy is 1.12. As a result, potential gains
from spatially explicit policy are small. This highlights the importance of having a
more precise estimate of this elasticity. Focusing on Column 6, the lower discount rate
magnifies externalities, which in turn increases the potential gains from spatially explicit
policy from 0.07% of agricultural production to 0.29% of agricultural production. It also
implies that subsidies are very inefficient as transfers due to large negative externalities.

In this exercise, although “optimal” district specific subsidies increase total surplus,
for high calibrations of the discount rate they do reduce farmer surplus in high external-
ity districts, as relatively inefficient subsidies are reduced in those districts. As a result,
this “optimal” policy may not be politically feasible. However, alternative more feasible
policies can replicate the proposed optimal electricity tariff, while generating potentially
larger gains. First, Badiani & Jessoe (2017) and Fishman et al. (2017) find that re-
sponses to changes in the cost of groundwater extraction tend to be on the extensive
margin (in reduced area under irrigation) and not intensive margin (through reduced
pumping). As a result, impacts of changing electricity tariffs can be replicated through
other policies that change incentives to irrigate.41 Additionally, Chatterjee et al. (2017)
document that output subsidies for water intensive crops create incentives to increase
groundwater extraction. Therefore, policies which reduce input subsidies complemen-
tary to irrigation or output subsidies for water intensive crops while increasing subsidies
for inputs complementary to rainfed agriculture could increase the efficiency of farmer
subsidies, especially in districts with large pumping externalities.

8 Conclusion

This analysis suggests that groundwater depletion in India from 2000-2010 permanently
reduced economic surplus by 1.2% of gross agricultural revenue. This is similar to an-
ticipated losses in India due to climate change of 1.8%/decade under the 4◦C warming
scenario (Government of India (2018)), and is especially concerning given accelerating
rates of depletion (Jacoby (2017)). Policy solutions without economic tradeoffs may
not be easy to come by: without reducing total electricity subsidies, the spatially ex-
plicit subsides I study can only increase surplus by a magnitude equal to losses from

41Note that implementation of volumetric pricing could have a very different set of impacts on elec-
tricity use, especially with respect to efficiency, than the changes to electricity pricing as implemented
through pump capacity fees that I consider.
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less than 1 year of groundwater depletion. Moreover, this policy reduces farmer surplus
in districts with large externalities, and therefore may be politically infeasible. How-
ever, understanding the magnitudes of these externalities and the losses from depletion
enables quantifying the potential efficiency gains from investments in surface water
irrigation, or subsidies for inputs complementary to rainfed agriculture.

To undertake this analysis, I have expanded on tools from the program evalua-
tion literature and microeconomic theory to define the marginal surplus effect. While
marginal treatment effects capture the impact of policies or shocks which increase adop-
tion of some treatment (such as college attendance) on observable outcomes, marginal
surplus effects capture the direct impact of these policies or shocks on the economic
surplus of inframarginal adopters. This is an important metric for policy across a range
of contexts, such as health and safety regulations for workers, environmental regulations
for firms, or, in this study, groundwater depletion in agriculture.
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Figure 1: Cost and benefit shifters

(a) Potential aquifer yield Zn (b) log rel. potential irrigated crop yield Wn

Notes: Variation in the cost instrument Zn (potential aquifer yield, Panel (a)) and the outcome instru-
ment Wn (log relative potential irrigated crop yield, Panel (b)) across districts in India is presented
here. Colors correspond to quintiles of their respective distributions. District boundaries are in black,
and state boundaries are in white.
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Figure 2: Model comparative statics
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(b) Decreased costs of treatment

Notes: Panel (a) shows the effects of shifting w, the instrument for potential outcome under treatment
(which shifts potential outcome under treatment Y1i to Y ∗

1i), while Panel (b) shows the effects of shifting
z, the instrument for costs of adopting treatment (which shifts costs C1i to C∗

1i). Changes in the share
of agents adopting treatment, from E[Di] to E[D∗

i ], are displayed. Changes in average surplus E[πi]
or changes in average outcomes E[Yi] are shaded. Marginal treatment effects are in purple, and are
equal to the change in average outcomes per unit change in adoption of treatment caused by shifts to
z. Marginal surplus effects are in pink, and are equal to the change in average surplus per unit change
in adoption of treatment caused by shifts to either z or w. The change in average surplus caused by
both z and w is proportional to the marginal surplus effect. However, the change in average outcomes
caused by z is proportional to the marginal treatment effect, while the change in average outcomes
caused by w is proportional to the marginal surplus effect plus the marginal treatment effect.
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Figure 3: Marginal surplus effect estimates

Notes: Solid lines present estimates of marginal surplus effects (the change in average surplus per
unit change in adoption caused by shifts to either costs or outcomes under treatment), while dashed
lines present estimates of local average surplus effects (a weighted average of marginal surplus effects).
Dashed lines for IV and Weighted IV estimators are the estimates of local average surplus effects used
to construct marginal surplus effects, following Section 3.5.3. The control function estimate of the local
average surplus effect is constructed by replacing outcomes and treatment in the IV regression using
w with control function estimates of predicted changes in surplus and changes in propensity scores.
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Figure 4: Optimal electricity taxes in Rajasthan

(a) Optimal tax, by district (b) Externality ratios and DWL, by district

Notes: This figure presents the results of the optimal policy exercise. In Panel (a), I plot the optimal
electricity tax by district in Rajasthan, dropping districts with missing data or high levels of surface
water irrigation. In Panel (b) I plot farmer externality ratios (the negative externality on farmers
created by induced marginal groundwater extraction per unit of transfer to farmers, which varies across
districts) and deadweight loss (DWL) as a function of the electricity tax. The optimal electricity tax
solves

λ− 1 = (DWL) + λ(Farmer externality ratio) + (Utility externality ratio)

λ is the willingness to pay of the social planner to increase farmer surplus by 1 unit. I use λ = 1.56 for
values reported in this figure, which implies current subsidies are optimal if the planner is constrained
to a single state level subsidy. I assume a constant elasticity of demand for electricity and water to the
price of electricity. Both deadweight loss and externality ratios vary with the tax as electricity use and
groundwater extraction respond. Farmer externality ratios by district are plotted in Panel (b). These
externality ratios drive variation across districts in the optimal tax, and are the product of the inverse
specific yield, inverse depth to water table, and the share of aquifer irrigated. The vertical dotted line
in Panel (b) is the observed tax in Rajasthan (Fishman et al., 2016), while the horizontal dotted line
is at 1: as discussed in Section 7.1, when the farmer externality ratio is above 1, any subsidy decreases
farmer surplus, while when the farmer externality ratio is below 1, any subsidy increases farmer surplus
(although subsidies are still costly to the social planner, due to increased net fiscal outlays, deadweight
loss, and negative externalities on utilities). A tick is added to the bottom of the graph for the optimal
tax in each district.
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Table 1: Descriptive statistics

Mean SD Min Max # of obs. # of clu.
Ag ’07-’11
Yn Agricultural productivity (’000 Rs/ha) 24.9 15.1 1.3 125.0 884 222
Dn Share irrigated 0.550 0.273 0.017 1.000 884 222
Zn Potential aquifer yield (40 L/s) 0.336 0.349 0.025 1.000 884 222
Wn log relative potential irrigated crop yield 0.533 0.254 0.098 2.050 884 222
Xn log potential rainfed crop yield (log t/ha) 0.690 0.503 -2.234 1.285 884 222
Share rice 0.268 0.265 0.000 0.977 884 222
Share wheat 0.211 0.190 0.000 0.631 884 222

NSS ’12
Yi Agricultural productivity (’000 Rs/ha) 36.6 26.1 0.0 100.0 33,778 222
Yi|Di = 1 Irrigated plots 44.9 26.3 0.0 100.0 23,957 220
Yi|Di = 0 Rainfed plots 22.0 18.3 0.0 100.0 9,821 189

Area (ha) 1.778 2.540 0.001 40.823 33,778 222
Di Irrigated 0.637 0.000 1.000 33,778 222
Agricultural inputs net irrigation (’000 Rs/ha) 15.4 15.5 0.0 100.0 26,280 222
Any bank loan 0.310 0.000 1.000 26,280 222

Irr ’07
Infrastructure costs/irrigated ha (’000 Rs/ha) 26.6 14.5 3.4 85.1 222 222
Groundwater share of irrigation 0.658 0.257 0.022 1.000 222 222
Deep tubewells/irrigated ha 0.025 0.057 0.000 0.616 222 222
Shallow tubewells/irrigated ha 0.130 0.213 0.000 1.821 222 222
Dugwells/irrigated ha 0.251 0.401 0.000 2.961 222 222

Well ’95-’17
Depth to water table (mbgl) 14.3 15.4 -1.1 534.0 123,199 203

Notes: Descriptive statistics on the primary datasets are presented here. Units are in parentheses,
and standard deviations are omitted for binary variables. Observations in Ag ’07-’11 are district-
year, observations in NSS ’12 are household-plot (for agricultural productivity, area, and irrigated)
or household (for agricultural inputs and any bank loan), observations in Irr ’07 are district, and
observations in Well ’95-’17 are well-season. Clusters are districts. To maintain comparability to Ag
’07-’11 and Irr ’07, statistics for the NSS ’12 are calculated weighting using sampling weights times
plot area, with weights scaled so each district receives identical weight. Similarly, statistics for Well
’95-’17 are weighted so each district-year receives identical weight. All subsequent analysis maintains
these weights.
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Table 2: Instrumental variables estimates

Share irrigated Agricultural productivity (’000 Rs/ha)

First stage
(
βFS
(·)

)
Reduced form

(
βRF
(·)

)
OLS IV

(
βIV
(·) =

βRF
(·)

βFS
(·)

)
(1) (2) (3) (4) (5) (6) (7)

Zn (cost instrument) 0.278*** 6.3
(0.056) (4.1)

Wn (outcome instrument) 0.791*** 42.9***
(0.188) (10.2)

Dn (share irrigated) 23.9*** 22.6* 54.3***
(2.8) (13.1) (14.5)

Instrument (IV only) - - - - - Zn Wn

State FE X X X X X X X
State FE × Xn X X X X X X X
State FE × Zn - X - X - - X
State FE × Wn X - X - - X -
# of observations 884 884 884 884 884 884 884
# of clusters 222 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in
parentheses. Regression table contains instrumental variable estimates from Ag ’07-’11 using potential
aquifer flow Zn and log relative potential irrigated crop yield Wn as instruments. In each case, the
effect of share irrigated on agricultural productivity per hectare is instrumented for. Controls in all
specifications include state fixed effects and state fixed effects interacted with log potential rainfed crop
yield Xn. The estimated local average surplus effect is the coefficient on share irrigated in Column
7 minus the coefficient on share irrigated in Column 6; estimates of local average surplus effects and
pseudo treatment effect elasticities of demand are presented in Table 3.
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Table 3: Local average surplus effect estimates

Agricultural productivity (−) Infrastructure costs
Ag ’07-’11 Irr ’07

IV WIV IV WIV
(1) (2) (3) (4)

Zn

βFS
Z (first stage) 0.278*** 0.245*** 0.574*** 0.575***

(0.056) (0.073) (0.217) (0.221)
βIV
Z =

βRF
Z

βFS
Z

= LATEZ 22.6* 32.9** -59.1** -86.9*
(13.1) (15.7) (25.5) (47.4)

State FE × Wn X X X X
Wn

βFS
W (first stage) 0.791*** 0.654*** 0.275*** 0.258***

(0.188) (0.216) (0.068) (0.095)
βIV
W =

βRF
W

βFS
W

= LASEW + LATEW 54.3*** 82.7*** 28.3 32.6
(14.5) (28.5) (18.2) (24.3)

State FE × Zn X X X X
Surplus effects

βIV
W − βIV

Z ≈ LASEW 31.7* 49.8 87.4*** 119.6**
(17.9) (30.8) (33.7) (55.9)

βIV
Z

βIV
W −βIV

Z
≈ Treatment effect

elasticity of demand 0.715 0.660 -0.676*** -0.727***
(0.733) (0.607) (0.156) (0.172)

State FE X X X X
State FE × Xn X X X X
LASE: p-value [pairs bootstrap-c p-value] 0.077 [0.136] 0.106 [0.144] 0.010 [0.052] 0.033 [0.072]
(Zn,Wn) = (Aquifer yieldn, Irr. crop yieldn) X X - -
(Zn,Wn) = (Irr. crop yieldn,Aquifer yieldn) - - X X
# of observations 884 884 222 222
# of clusters 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level
are in parentheses, and each cell reports a coefficient from a separate regression. Estimates from
Columns 1 and 2 are directly comparable, while the relative interpretation of estimates from Columns
3 and 4 is discussed in Section 4.2 and 5.1. Rows 1 and 3 report first stage coefficients with irrigated
share of agricultural land Dn as the dependent variable. Rows 2 and 4 report instrumental variable
estimates with gross revenue (for Columns 1 and 2) or negative fixed costs of irrigation infrastructure
(for Columns 3 and 4) as the dependent variable (’000 Rs/ha). Row 5 reports estimates of the local
average surplus effect, and Row 6 reports estimates of a pseudo treatment effect elasticity of demand.
Estimators in Columns 2 and 4 are weighted to balance the share of compliers in each state across βIV

Z

and βIV
W as discussed in Section 3.5.2. All specifications include as controls state fixed effects and state

fixed effects interacted with log potential rainfed crop yield Xn. The instrument Zn is potential aquifer
yield in Columns 1 and 2 and log relative potential irrigated crop yield in Columns 3 and 4, and the
instrument Wn is log relative potential irrigated crop yield in Columns 1 and 2 and potential aquifer
yield in Column 3 and 4. Pairs bootstrap-c p-values for estimates of local average surplus effects are
calculated following Young (2018).
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Table 4: LASE robustness, NSS

Agricultural productivity Agricultural inputs
Ag ’07-’11 NSS ’12

IV IV IV (CF predictions) IV
(1) (2) (3) (4)

Zn

βFS
Z 0.278*** 0.289*** 0.257 0.375***

(0.056) (0.073) (0.056) (0.078)
βIV
Z 22.6* 37.5*** 13.4 12.0*

(13.1) (13.9) (13.5) ( 6.6)
State FE × Wn X X X X

Wn

βFS
W 0.791*** 0.834*** 0.881 0.852***

(0.188) (0.226) (0.218) (0.214)
βIV
W 54.3*** 67.9*** 10.1 + 54.3 + 4.6 8.6

(14.5) (23.9) (10.7)︸ ︷︷ ︸
LATEW

+ (20.0)︸ ︷︷ ︸
LASEW

+(19.3)︸ ︷︷ ︸
biasW

( 7.3)

State FE × Zn X X X X
Surplus effects

βIV
W − βIV

Z 31.7* 30.4 55.5 -3.3
(17.9) (26.3) (19.7) ( 9.7)

State FE X X X X
State FE × Xn X X X X
# of observations 884 33,778 33,778 26,280
# of clusters 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue (for columns 1, 2, and 3) or expenditures
on agricultural inputs net of irrigation (for column 4) as the dependent variable (’000 Rs/ha). Row 5
reports estimates of the local average surplus effect. Estimators in Columns 2, 3, and 4 are weighted
using sample weights times plot area, with weights scaled so each district receives identical weight.
Column 3 uses control function predicted outcomes and propensity scores as outcomes in the reduced
form and first stage, respectively. This allows decomposition of βIV

W into a LATE, a LASE, and bias
from violations of the exclusion restriction Wn 6⇒ Y0i, which is identified using the control function
approach. All specifications include as controls state fixed effects and state fixed effects interacted with
log potential rainfed crop yield Xn. The instrument Zn is potential aquifer yield, and the instrument
Wn is log relative potential irrigated crop yield.
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Table 5: Control function estimates

gC -34.1 (13.6)**
c0 4.0 (17.0)
gY 78.6 (27.5)***
σV 25.8 ( 9.5)***

Cov(−V1i,Vi−E[Vi|Xi])

σ2
V

0.21 (0.44)
Cov(V0i,Vi−E[Vi|Xi])

σ2
V

0.11 (0.24)
Cov(VCi,Vi−E[Vi|Xi])

σ2
V

0.68 (0.46)
# of observations 33778

# of clusters 222

Notes: Robust standard errors clustered at the district level are used to construct 95% confidence
intervals in square brackets. Parameters are estimated by a two step control function approach as
detailed in Section 3.5.4 and B.3, and standard errors are adjusted for the two step procedure. gC is
the effect of the cost instrument ZCn (potential aquifer yield) on cost per hectare of irrigation, gY and
c0 are the effects of the outcome instrument ZY n (log relative potential irrigated crop yield) on relative
revenue per hectare from irrigation and revenue per hectare from rainfed agriculture, respectively. σV

is the standard deviation of idiosyncratic relative profitability of irrigated agriculture. The three
covariance terms decompose the variance of idiosyncratic relative profitability of irrigated agriculture
into components from idiosyncratic revenue from irrigated agriculture, idiosyncratic revenue from
rainfed agriculture, and idiosyncratic costs of irrigated agriculture, respectively.
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Table 6: Informativeness of IV estimators for CF predicted LATE and LASE

Descriptive Statistic Estimate of interest Informativeness
(IV estimator) (CF prediction)
βIV
Z LATEZ 0.506

βIV
W − βIV

Z LASEW 0.118
βWIV
Z LATEWIV

Z 0.455
βWIV
W − βWIV

Z LASEWIV
W 0.504

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The informativeness of 4 IV estimators for their
target parameters estimated using a control function approach are presented here. Informativeness
is calculated following Andrews et al. (2018), who note that it can be interpreted as the R2 from
the population regression of the target parameter on the corresponding IV estimator in their joint
asymptotic distribution. IV estimators βIV

Z and βIV
W use Z (potential aquifer flow) and W (log relative

potential irrigated crop yield) as instruments, respectively, for the effect of D (irrigation) on Y (gross
revenue per hectare). CF predictions replace Y and D with their predictions using a two step control
function approach following Kline & Walters (2017). LATE comparisons control for state FE, W (Z),
and state FE interacted with X for β(·)

Z (β(·)
W ), and LASE comparisons control for state FE, state FE

interacted with W (Z), and state FE interacted with X for β(·)
Z (β(·)

W ). WIV estimators use weights to
balance compliers on state FE, with weights constructed as described in Section 3.5.2. Cluster robust
variance covariance matrices are estimated clustered at the district level.
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Table 7: Calibrated parameters

Value [Low, High] Source
Calibrated parameters

εA,p, εM,p -0.18 Badiani & Jessoe (2017)
r, upper bound (rural credit interest rate) 0.20 Hussam et al. (2017)
r, lower bound (India 30 year bond yield) 0.08
m (energy/m3 of water/m) 6.8 Wh/m3/m Shah (2009)
dE[Di]/db -.0024/m Fishman et al. (2017)

Calibrated parameters (Rajasthan)
p 1.21 Rs/kWh Fishman et al. (2016)
c 3.30 Rs/kWh Fishman et al. (2016)
b (depth to water table) [5m, 66m] Well ’95-’17
α (specific yield) [0.015, 0.068] Narain et al. (2006)
E[Di]L/L (aquifer share irrigated) [0.015, 0.492] Ag ’07-’11
A/E[Di]L (groundwater use/irrigated ha) [0.065, 0.650] m ha/ha Ag ’07-’11
Rajasthan 2008 agricultural electricity use 9,791 GWh Rajasthan DES (2011)

India statistics
E[Di]L (irrigated ha) 60 million ha Ag ’07-’11
A/E[Di]L (avg. groundwater use/irrigated ha) 0.43 m ha/ha Shah (2009), Ag ’07-’11
p 1.05 Rs/kWh Fishman et al. (2016)
pM/E[Di]L (avg. elec. exp./irrigated ha) 1,470 Rs/ha Fishman et al. (2016), Ag ’07-’11

Estimates
MSE(u) 71,500u Rs/ha Section 5.3
εA,p, εM,p (lower bound) -0.045 Section 7.2

Notes: This table contains the calibrated parameters for the counterfactual exercises in Section 5.4 and Section 7. Values are provided as points
when a single estimate is used, and as a range when the value used is allowed to vary across districts. Ranges for specific yield, depth to water
table, aquifer share irrigated, and groundwater use/irrigated ha are specific to Rajasthan. Depth to water table is estimated as the median post
monsoon Kharif reading from the network of monitoring tube wells, bottom winsorized at 5m.
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Table 8: Lost surplus from groundwater depletion

1m decline 3.3m decline, NW India
Rs/irrigated ha Rs/ha [% of productivity/ha]

(1) (2)
IV

LASE 251 [0.80%]
MSE 132 282 [0.90%]

Weighted IV
LASE 394 [1.26%]
MSE 172 365 [1.16%]

Control Function
LASE 430 [1.37%]

Back of envelope
3x Electricity costs 93 197 [0.63%]
6x Electricity costs 186 395 [1.26%]

Notes: This table presents estimates of the lost surplus from groundwater depletion using estimates
of local average surplus effects and marginal surplus effects from Section 5.1 and 5.3, and calibrated
parameters from Table 7. Column 1 presents the impact of a 1m decline in the water table on costs
per irrigated hectare. Column 1 IV and WIV estimates are calculated using the estimated marginal
surplus effect, and the calibrated effect of a 1m decline in water tables on adoption of irrigation.
Column 1 back of the envelope approaches calculate the increased electricity costs farmers would have
to pay to pump groundwater one additional meter, exclusively using calibrated parameters from Table
7. Column 2 presents the impact of a 3.3m decline in water tables in Northwestern India (Haryana,
Punjab, and Rajasthan), the estimate of 2000’s water table declines from Rodell et al. (2009).
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Table 9: Irrigation technology

Irr ’07 Well ’95-’17 Well ’07-’11
Groundwater ha/ha Surface water ha/ha Deep tubwell/ha Shallow tubewell/ha Dugwell/ha Depletion (mbgl/year) Depth to water table (mbgl)

(1) (2) (3) (4) (5) (6) (7)
Dn (share irrigated) 0.718*** 0.282 0.091* 0.067 -0.019 2.14 18.1

(0.222) (0.222) (0.053) (0.078) (0.127) (1.39) (19.1)
Instrument Wn Wn Wn Wn Wn Wn Wn

State FE X X X X X X X
State FE ×Xn X X X X X X X
State FE ×Zn X X X X X X X
# of observations 222 222 222 222 222 85,804 28,169
# of clusters 222 222 222 222 222 198 176

Irr ’07 Well ’95-’17 Well ’07-’11
Groundwater ha/ha Surface water ha/ha Deep tubwell/ha Shallow tubewell/ha Dugwell/ha Depletion (mbgl/year) Depth to water table (mbgl)

(1) (2) (3) (4) (5) (6) (7)
Dn (share irrigated) 1.000*** 0.000 -0.002 0.325*** -0.395** 3.75 67.5

(0.207) (0.207) (0.031) (0.096) (0.155) (2.59) (41.4)
Instrument Zn Zn Zn Zn Zn Zn Zn

State FE X X X X X X X
State FE ×Xn X X X X X X X
State FE ×Wn X X X X X X X
# of observations 222 222 222 222 222 85,804 28,169
# of clusters 222 222 222 222 222 198 176

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in parentheses. In the first subtable,
coefficients on share irrigated are estimated using Wn, log relative potential irrigated crop yield, as an instrument. In the second subtable,
coefficients on share irrigated are estimated using Zn, potential aquifer flow, as an instrument. Controls Xn are log potential rainfed crop yield.
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Table 10: LASE robustness, controls

Agricultural productivity (Yn)
Ag ’07-’11

IV IV IV IV IV IV
(1) (2) (3) (4) (5) (6)

Zn

βFS
Z 0.278*** 0.465*** 0.229*** 0.239*** 0.310*** 0.394***

(0.056) (0.035) (0.053) (0.058) (0.060) (0.072)
βIV
Z 22.6* 22.3*** 26.3** 17.7 34.8*** 36.1***

(13.1) ( 4.6) (12.4) (15.1) (11.3) (10.0)
Wn X - X X X X
State FE × Wn X - - - X X
State FE × XnWn - - - - - X
State FE × W 2

n - - - - - X
Wn

βFS
W 0.791*** 0.302*** 0.522*** 0.756*** 0.502** 0.400*

(0.188) (0.101) (0.187) (0.187) (0.220) (0.222)
βIV
W 54.3*** 26.3*** 83.2*** 57.4*** 76.6** 84.3*

(14.5) ( 8.6) (27.1) (15.5) (33.7) (45.4)
Zn X - X X X X
State FE × Zn X - - - X X
State FE × XnZn - - - - - X
State FE × Z2

n - - - - - X
Surplus effects

βIV
W − βIV

Z 31.7* 4.0 56.9** 39.6* 41.9 48.2
(17.9) ( 9.6) (28.3) (20.6) (35.1) (47.0)

Xn X - X X X X
State FE X - X X X X
State FE × Xn X - - X X X
State FE × X2

n - - - - X X
# of observations 884 884 884 884 884 884
# of clusters 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue as the dependent variable (’000 Rs/ha).
The control Xn is log potential rainfed crop yield, the instrument Zn is potential aquifer yield, and
the instrument Wn is log relative potential irrigated crop yield.

68



Table 11: Placebo before Green Revolution

Dnt (share irrigated) log Ynt (log agricultural productivity)
(1) (2)

Zn 0.050 0.028
(0.063) (0.103)

1{t > 1966}Zn 0.116*** 0.120*
(0.042) (0.067)

Wn 0.182 0.755*
(0.144) (0.411)

1{t > 1966}Wn 0.335*** 0.781***
(0.114) (0.240)

logRF yieldn 0.144* 1.150***
(0.085) (0.260)

1{t > 1966} logRF yieldn 0.193*** 0.200
(0.074) (0.154)

State-by-year FE X X
# of observations 11,799 11,799
# of clusters 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level
are in parentheses. Zn is potential aquifer yield, Wn is log relative potential irrigated crop yield, and
RF yieldn is log potential rainfed crop yield. Outcomes are from Ag ’56-’11.
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Table 12: Irrigation and crop choice

Di1{Cropi = (.)}
Di (irrigated) Wheat Rice Cotton Soya Bajra Gram Maize Jowar Sugar RM Tur Groundnut Potato

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Zn 0.289***

(0.073)
Di (irrigated) 0.314 0.983*** -0.160 0.094 0.001 -0.249** 0.039 0.012 -0.060 0.028 0.009 -0.028 0.016

(0.219) (0.297) (0.108) (0.083) (0.143) (0.119) (0.116) (0.030) (0.107) (0.070) (0.012) (0.024) (0.045)
Instrument (IV only) - Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn

BH q-value - 0.495 0.012 0.495 0.558 0.996 0.236 0.796 0.796 0.796 0.796 0.796 0.558 0.796
State FE X X X X X X X X X X X X X X
State FE ×Xn X X X X X X X X X X X X X X
State FE ×Wn X X X X X X X X X X X X X X
# of observations 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778
# of clusters 222 222 222 222 222 222 222 222 222 222 222 222 222 222

(1−Di)1{Cropi = (.)}
Di (irrigated) Wheat Rice Cotton Soya Bajra Gram Maize Jowar Sugar RM Tur Groundnut Potato

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Zn 0.289***

(0.073)
Di (irrigated) -0.087** -0.513*** -0.053 -0.220** 0.158 -0.081 -0.187*** -0.027 0.000 -0.021 0.058 -0.027 0.000

(0.038) (0.148) (0.096) (0.107) (0.097) (0.057) (0.072) (0.045) (0.000) (0.027) (0.083) (0.054) (0.000)
Instrument (IV only) - Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn

BH q-value - 0.096 0.007 0.674 0.127 0.269 0.347 0.060 0.674 0.871 0.674 0.674 0.674 0.419
State FE X X X X X X X X X X X X X X
State FE ×Xn X X X X X X X X X X X X X X
State FE ×Wn X X X X X X X X X X X X X X
# of observations 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778
# of clusters 222 222 222 222 222 222 222 222 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in parentheses. Coefficients on share
irrigated are estimated using Zn, potential aquifer yield, as an instrument. Di is an irrigation indicator for plot i, and Cropi is the crop
cultivated on plot i. Controls Xn are log potential rainfed crop yield, and Wn is log relative potential irrigated crop yield. Di and Cropi are
from NSS ’12. Following Benjamini & Hochberg (1995) and Anderson (2008), BH p-value are multiple inference adjusted p-values (adjusted
within table).
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Table 13: LASE robustness, surface water and endogenous cultivation

Agricultural productivity (Yn) YnLn/Ln (YnLn + 20(Ln − Ln))/Ln

Ag ’07-’11
IV IV IV IV
(1) (2) (3) (4)

Zn

βFS
Z 0.278*** 0.279*** 0.456*** 0.456***

(0.056) (0.054) (0.075) (0.075)
βIV
Z 22.6* 15.1 34.5*** 17.2***

(13.1) (12.9) ( 5.6) ( 5.7)
State FE × Wn X X X X

Wn

βFS
W 0.791*** 0.777*** 0.559** 0.559**

(0.188) (0.227) (0.241) (0.241)
βIV
W 54.3*** 64.3*** 55.9*** 39.5**

(14.5) (19.3) (17.5) (18.4)
State FE × Zn X X X X

Surplus effects
βIV
W − βIV

Z 31.7* 49.2** 21.4 22.4
(17.9) (20.7) (17.4) (18.0)

State FE X X X X
State FE × Xn X X X X
GJ, HA+PJ, MH, RJ, UP - X - -
Endog. DnLn/Ln - - X X
# of observations 884 447 884 884
# of clusters 222 133 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue as the dependent variable (’000 Rs/ha).
The control Xn is log potential rainfed crop yield, the instrument Zn is potential aquifer yield, and
the instrument Wn is log relative potential irrigated crop yield. Column 2 restricts observations to
districts in the five 1961 states with the smallest shares of surface water irrigation. Columns 3 and 4
use share of district land irrigated, instead of share of district agricultural land irrigated, as treatment
Dn. Columns 3 and 4 use agricultural production plus a reservation rent for uncultivated land (0
in Column 7 and 20,000 Rs/ha in Column 8) per hectare of district land as the outcome, instead of
agricultural revenue per cultivated hectare.
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Table 14: Optimal electricity taxes in Rajasthan

ε = 0.18, r = 0.2 ε = 0.045, r = 0.2 ε = 0.18, r = 0.08
Status quo Optimal Status quo Optimal Status quo Optimal

(1) (2) (3) (4) (5) (6)
λ (implied by status quo) 1.56 1.56 1.12 1.12 2.13 2.13

Billion Rs [% of agricultural production]
Total subsidy 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%]
Deadweight loss 1.02 [0.65%] 1.09 [0.69%] 0.27 [0.17%] 0.29 [0.18%] 1.02 [0.65%] 1.20 [0.76%]
Externality (utility) 0.10 [0.06%] 0.07 [0.05%] 0.03 [0.02%] 0.02 [0.01%] 0.25 [0.16%] 0.17 [0.11%]
Farmer surplus

Subsidy 9.31 [5.94%] 9.24 [5.90%] 10.06 [6.42%] 10.04 [6.41%] 9.31 [5.94%] 9.13 [5.83%]
Externality (farmer) 0.70 [0.45%] 0.52 [0.33%] 0.20 [0.13%] 0.16 [0.10%] 1.75 [1.12%] 1.12 [0.71%]
Total 8.61 [5.50%] 8.72 [5.57%] 9.86 [6.30%] 9.88 [6.31%] 7.56 [4.83%] 8.01 [5.12%]

m/decade [% of 2000-2010 decline]
Water table decline 1.51 [45.7%] 1.26 [38.3%] 0.40 [12.2%] 0.34 [10.4%] 1.51 [45.7%] 1.19 [36.1%]

Notes: This table presents the results of the optimal policy exercise. Columns 1, 3, and 5 present results from maintaining the status quo (p =
1.21 Rs/ha in all districts, with marginal cost c = 3.30 Rs/ha). Columns 2, 4, and 6 present results from optimal subsidies holding fixed total
subsidies. ε is the calibrated elasticity of groundwater extraction/electricity use to the price of electricity, and r is the calibrated discount rate.
λ is the inverse marginal value of public funds for a marginal change to state level subsidies under the status quo. All cells report impacts of
the policy relative to no subsidies.
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A Data appendix

A.1 Construction of Wns

I construct two variables using potential crop yield: log relative potential irrigated crop
yield, and log potential rainfed crop yield. Define AI

nsc and AR
nsc to be the FAO GAEZ

potential crop yield in district n in state s for crop c under the intermediate irrigated
and rainfed scenarios, respectively, which I calculate by averaging the values across
FAO GAEZ 5 arc-minute cells to the district level. Let Lnsct be the land allocated to
crop c in district n in state s in year t, observed in Ag ’56-’11. Let Lsc =

∑
n,t Lnsct be

the total area, across all years in Ag ’56-’11, allocated to crop c in state s. I define

Wns ≡ log

∑
c Lsc min{AI

nsc, 10A
R
nsc}∑

c LscAR
nsc

logRF yieldns ≡ log

∑
c LscA

R
nsc∑

c Lsc

where Wns is the log relative potential irrigated crop yield, and RF yieldns is the log
potential rainfed crop yield. A few notes on the construction. First, the weights Lsc are
constant within state; this ensures that variation in Wn is caused by variation across
districts in the potential yield increase from irrigation, and not variation across dis-
tricts in weights. Since these weights vary across states, I control flexibly for state in
all analysis. It is important to allow the weights to vary across states; there is large
variation across states in crop choice. Second, applying min{AI

nsc, 10A
R
nsc} is similar to

winsorizing Wns at log 10 for each crop. This is almost exclusively necessary for a few
desert districts in Rajasthan and Gujarat; dropping these districts does not meaning-
fully change results, and the weighted instrumental variables estimator already places
very little weight on these districts. However, not implementing this winsorization puts
very high weight on these districts in estimation of the coefficient on Wns, since these
districts’ predicted rainfed yield is close to 0. Since these districts are very dependent
on irrigation and have relatively high yields, this increases the first stage and reduced
form coefficients on Wns. Third, controlling for logRF yieldns and a state fixed effect,
the coefficient on Wns would be the same if instead Wns = log

∑
c Lsc min{AI

nsc,10A
R
nsc}∑

c Lsc
, or

log potential irrigated crop yield.
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B Model appendix

B.1 Proofs and derivations appendix

Proof of generality of functional form. Under weak separability of unobserved hetero-
geneity, and imposing the exclusion restrictions, agent surplus under treatment Y1i(w)−
C1i(z) = U(h(w, z), Ṽi), following Bhattacharya (2017) in defining weak separability.
Taking derivatives with respect to w and z yields

∂Y1i

∂w
=

∂U(h(z, w); Ṽi)

∂h

∂h(z, w)

∂w
∂C1i

∂z
=

∂U(h(z, w); Ṽi)

∂h

∂h(z, w)

∂z
∂2Y1i

∂w∂z
=

∂2U(h(z, w); Ṽi)

∂h2

∂h(z, w)

∂w

∂h(z, w)

∂z
+

∂U(h(z, w); Ṽi)

∂h

∂2h(z, w)

∂w∂z

A few restrictions appear here. First, ∂2Y1i

∂w∂z
= 0 (exclusion restriction). Second, ∂h(z,w)

∂z
>

0 and ∂h(z,w)
∂w

> 0 (monotonicity). Third, ∂U(h(z,w);Ṽi)
∂h

> 0 (monotonicity). Therefore,
excluding edge cases, ∂2U(h(z,w);Ṽi)

∂h2 = 0 and ∂2h(z,w)
∂w∂z

= 0. The latter implies h(z, w) =

hW (w) + hZ(z) + Vhi. The former implies ∂U(h(z,w);Ṽi)
∂h

= Vγi for some constant which is
a function of Ṽi. Making these substitutions implies

Y1i(w)− C1i(z) = Vγi(hW (w) + hZ(z) + Vhi) + ṽi

which is equivalent to

Y1i(w) = VγiγW (w) + V1i

C1i(z) = VγiγZ(z) + VCi
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Derivation of Equation 4 and 5. Calculating each derivative,

dE[Yi(z, w)]

dz
= fV (F

−1
V (E[Di(z, w)]))

dγZ(z)

dz
E[Y1i(w)− Y0i|Ui = E[Di(z, w)]]

dE[πi(z, w)]

dz
= −E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]

dγZ(z)

dz
dE[πi(z, w)]

dw
= −E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]

dγW (w)

dw
dE[Di(z, w)]

dz
= fV (F

−1
V (E[Di(z, w)]))

dγZ(z)

dz
dE[Di(z, w)]

dw
= fV (F

−1
V (E[Di(z, w)]))

dγW (w)

dw

Some algebra then yields the desired result.

Derivation of Equation 10. Calculating the derivative of TOT(u;w) yields

dTOT(u;w)
dw

= E[Vγi|Ui < u]
dγW (w)

dw

Some algebra, and results from the proof of Equation 4 and 5, yields the desired result.

Derivation of Equation 11. Calculating each derivative,

dE[Yi(z, w)]

dw
= fV (F

−1
V (E[Di(z, w)]))

dγW (w)

dw
E[Y1i(w)− Y0i|Ui = E[Di(z, w)]]+

E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]
dγW (w)

dw

Some algebra, and results from the proof of Equation 4 and 5, yields the desired result.

Proof of Equation 19. It suffices to show that βWIV
Z + LASEW = βIV

W . Let Z⊥
i ≡

Zi − E[Zi|Wi, Xi], and W⊥
i ≡ Wi − E[Wi|Zi, Xi]. Note that

βWIV
Z =

∑
s

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

E[1{Si = s}(ωW (Si)/ωZ(Si))DiZ
⊥
i ]

E[(ωW (Si)/ωZ(Si))DiZ⊥
i ]

I then proceed in two steps. First, I show that

E[1{Si = s}(ωW (Si)/ωZ(Si))DiZ
⊥
i ]

E[(ωW (Si)/ωZ(Si))DiZ⊥
i ]

=
E[1{Si = s}DiW

⊥
i ]

E[DiW⊥
i ]
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Second, I consider conditions under which Assumption 5a holds. Written in terms of
the natural estimators of LATEZ|s and LATEW |s + LASEW |s, with LASEW |s defined
similarly,

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[YiW

⊥
i |Si = s]

E[DiW⊥
i |Si = s]

− LASEW |s

Substituting each of these expressions into the original equation yields

βWIV
Z + LASEW =

∑
s

E[YiW
⊥
i |Si = s]

E[DiW⊥
i |Si = s]

E[1{Si = s}DiW
⊥
i ]

E[DiW⊥
i ]

= βIV
W

which completes the proof.
For the first step, I use the result that ωW (s) =

E[1{Si=s}DiW
⊥
i ]

E[DiW⊥
i ]

and ωZ(s) =

E[1{Si=s}DiZ
⊥
i ]

E[DiZ⊥
i ]

, which can be shown by rewriting the IV estimator as a weighted average
of IV estimators conditional on Si = s. Substituting these expressions in immediately
completes the first step.

For the second step, I impose some additional assumptions. First, Z⊥
i ⊥ (Wi, X̃i)

and W⊥
i ⊥ (Zi, X̃i) conditional on Si = s. These are strong assumptions, but can be

achieved by reweighting. Second, I assume marginal treatment effects and the propen-
sity score are linear conditional on Si = s. Third, I assume E[(Z⊥

i )
3|Si = s] = 0 and

E[(W⊥
i )3|Si = s] = 0. Again, these are strong assumptions, but can be achieved by

reweighting.
I then proceed using

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[(E[Yi|Z⊥

i ,Wi, Xi]− E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z
⊥
i |Si = s]

E[(E[Di|Z⊥
i ,Wi, Xi]− E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥

i |Si = s]

This requires a few steps. I focus on the numerator; the approach is the same for the de-
nominator. First, I project Yi onto Z⊥

i , yieldingE[YiZ
⊥
i |Si = s] = E[E[Yi|Z⊥

i , Si]Z
⊥
i |Si =

s]. Second, I apply the law of iterated expectations. Since Z⊥
i ⊥ (Wi, X̃i) conditional

on Si = s, E[E[Yi|Z⊥
i , Si]Z

⊥
i |Si = s] = E[E[Yi|Z⊥

i ,Wi, Xi]Z
⊥
i |Si = s]. Lastly, using

Z⊥
i ⊥ (Wi, X̃i), and E[Z⊥

i |Si = s] = 0, we complete the equality.
Next, I substitute these differences with integrals over marginal treatment effects

and the propensity score. Here, I use the linearization of both. Let MTE(u;w, x̃, s) =
m1su+m2sw + x̃′m3s and E[Di(z, w; x̃, s)] = d1sz + d2sw + x̃′d3s. Then, some calculus
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yields

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[d1s(Z

⊥
i )

2(m1sE[Di|Wi, Xi] +m2sWi + X̃ ′
im3s) +

1
2
d1sm1s(Z

⊥
i )

3|Si = s]

E[d1s(Z⊥
i )

2|Si = s]

Two simplifications can be made here. First, I use E[(Z⊥
i )

3|Si = s] = 0. Second, I use
Z⊥

i ⊥ (Wi, X̃i). Together, these yield

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

= m1sE[Di|Si = s] +m2sE[Wi|Si = s] + E[X̃ ′
i|Si = s]m3s

A symmetric proof shows the same result holds for E[YiW
⊥
i |Si=s]

E[DiW⊥
i |Si=s]

− LASEW |s, which
completes the proof.

B.2 Weights

B.2.1 LATE and LASE weights

I start with the result from Heckman & Vytlacil (2005) on OLS.

Cov(Q, T − E[T |X])

Var(T − E[T |X])
=

∫ ∫
∂E[Q|T = t,X = x]

∂t
ω(t, x)dtdx

ω(t, x) =
Pr[T > t,X = x]E[T − E[T |X]|T > t,X = x]∫ ∫

Pr[T > t′, X = x′]E[T − E[T |X]|T > t′, X = x]dt′dx′

The first expression shows that the coefficient on T , controlling for X, estimates a
weighted average of derivatives of the conditional expectation function of Q given T = t

and X = x with respect to t. The second expression shows that the weights ω(t, x) are
the partial expectation, conditional on X = x, of T − E[T |X] given T > t, times the
probability that X = x. Note this partial expectation approaches 0 at the edges of the
conditional support of T conditional on X = x, which is consistent with our intuition
that OLS estimates should not depend on derivatives of the conditional expectation
function outside the support of the covariates. Additionally, it is helpful to note that∫

ω(t, x)dt =
Pr[X = x]Var(T |X = x)∫
Pr[X = x′]Var(T |X = x′)dx′

The weights placed on each x depend on the probability X = x and the conditional
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variance of T given X = x.
Still following Heckman & Vytlacil (2005), we can now apply this to the IV estimator

βIV
Z = Cov(Yi,Zi−E[Zi|Wi,Xi])

Cov(Di,Zi−E[Zi|Wi,Xi])
= LATEZ . For the definition of these weights, it will be

useful to define the propensity score P (z, w;x) = E[Di|Zi = z,Wi = w,Xi = x]. Note
that just identified linear instrumental variables is just a ratio of OLS estimators, so
we can simply apply the formula above. Additionally, we make the substitution that
∂E[Yi(z,w;x)]

∂z
= ∂P (z,w;x)

∂z
MTE(P (z, w;x);w, x). Applying these results yields

LATEZ =

∫
MTE(u;w, x)ωZ(u;w, x)dudwdx

ωZ(u;w, x) = (Pr[P (Zi,Wi;Xi) > u,Wi = w,Xi = x]·

E[Zi − E[Zi|Wi, Xi]|P (Zi,Wi;Xi) > u,Wi = w,Xi = x]) /(∫ ∫ ∫
Pr[P (Zi,Wi;Xi) > u′,Wi = w′, Xi = x′]·

E[Zi − E[Zi|Wi, Xi]|P (Zi,Wi;Xi) > u′,Wi = w′, Xi = x′]du′dw′dx′
)

Once again, the weights on MTE are in terms of partial expectation functions; weight
is placed on latent propensities to adopt u within the support of the propensity score
P (Zi,Wi;Xi). Again, for interpretation it is helpful to integrate over u to estimate the
weight placed on observations with (Wi, Xi) = (w, x). When the propensity score is
linear in z conditional on (Wi, Xi), one can show∫

ωZ(u;w, x)du =
Var(P (Zi,Wi;Xi)|Wi = w,Xi = x)Pr[Wi = w,Xi = x]∫ ∫

Var(P (Zi,Wi;Xi)|Wi = w′, Xi = x′)Pr[Wi = w′, Xi = x′]dw′dx′

The most weight is placed on values of (Wi, Xi) which have the highest conditional
variance of the propensity score and which are observed the most frequently.

Finally, we can apply this to instrumental variables using Wi as an instrument,
βIV
W = Cov(Yi,Wi−E[Wi|Zi,Xi])

Cov(Di,Wi−E[Wi|Zi,Xi])
= LASEW + LATEW . Once again, we represent this as the

ratio of OLS estimators, and we apply the result above for OLS. Here, we make use
of the fact that ∂E[Yi(z,w;x)]

∂w
= ∂P (z,w;x)

∂w
(MSE(P (z, w;x);x) +MTE(P (z, w;x);w, x)). It

will also be necessary to define implicitly define Ž(u;w, x) by u = P (Ž(u;w, x), w;x); Ž
inverts the propensity score to recover the value of z that will set the propensity score
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equal to u given (Wi, Xi) = (w, x). Then,

LATEW =

∫
MTE(u;w, x)ωW (u;w, x)dudwdx

LASEW =

∫
MSE(u;x)ωW (u;w, x)dudwdx

ωW (u;w, x) =

(
∂P (Ž(u;w, x), w;x)/∂w
∂P (Ž(u;w, x), w;x)/∂z

·

Pr[Wi > w,P (Zi,Wi;Xi) = u,Xi = x]·

E[Wi − E[Wi|Zi, Xi]|Wi > w,P (Zi,Wi;Xi) = u,Xi = x]

)
/(∫ ∫ ∫

∂P (Ž(u′;w′, x′), w′;x′)/∂w

∂P (Ž(u′;w′, x′), w′;x′)/∂z
·

Pr[Wi > w′, P (Zi,Wi;Xi) = u′, Xi = x′]·

E[Wi − E[Wi|Zi, Xi]|Wi > w′, P (Zi,Wi;Xi) = u′, Xi = x′]du′dw′dx′
)

Although these expressions appear more complicated, integrating over u and w, once
again we can interpret them roughly as variances of the propensity score conditional
on the controls Zi and Xi; this is exact when the propensity score is linear in z and w

conditional on Xi = x.
Finally, these expressions are all functions of P (z, w;x) and the joint distribution

of (Zi,Wi, Xi), all of which are nonparametrically identified, so the weights are non-
parametrically identified. In practice, estimation of the weights may involve placing
parametric restrictions on P (z, w;x).

B.2.2 Efficient reweighting

Define
βWIV
Z (wZ) =

Cov(wZ(Si)Yi, Zi − E[Zi|Wi, (Xi, Si)])

Cov(wZ(Si)Di, Zi − E[Zi|Wi, (Xi, Si)])

and βWIV
W (wW ) analagously. Let ωW (s) =

∫
ωW (u;w, (x, s))dudwdx and ωZ(s) =∫

ωZ(u;w, (x, s))dudwdx. Given this, for βWIV
W (wW ) and βWIV

Z (wZ) to place the same
weight on compliers with Si = s, it must be the case that

wZ(s)ωZ(s) = wW (s)ωW (s)
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Efficient weights solve

w = argmin
m

Var
[
β̂WIV
W (wW )− β̂WIV

Z (wZ)
]

s.t. wZ(s)ωZ(s) = wW (s)ωW (s)

I assume the propensity score is linear in (z, w). Under this assumption, ωW and
ωZ simplify to

ωW (s) =
Var(Wi − E[Wi|Zi, (Xi, Si)]|Si = s)Pr[Si = s]

Var(Wi − E[Wi|Zi, (Xi, Si)])

ωZ(s) =
Var(Zi − E[Zi|Wi, (Xi, Si)]|Si = s)Pr[Si = s]

Var(Zi − E[Zi|Wi, (Xi, Si)])

Define gZ ≡ Cov(Di,Zi−E[Zi|Wi,Xi])
Var(Zi−E[Zi|Wi,Xi])

and gW ≡ Cov(Di,Wi−E[Wi|Zi,Xi])
Var(Wi−E[Wi|Zi,Xi])

; that gZ and gW

are constants follows from the assumption that the propensity score is linear in (z, w).
Suppose further that the structural errors in the outcome equation are homoskedastic.
Then the optimal weights satisfy

wZ(s) =
g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s) + g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

wW (s) =
g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s)

g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s) + g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

To interpret this expression, note that the realized equivalent of g2ZVar(Zi|Wi,(Xi,Si))

g2W Var(Wi|Zi,(Xi,Si))
is

just the ratio of the first stage F-stats. As one F-stat grows arbitrarily large relative
to the other, the weights essentially reweight observations in the regression with the
larger F-stat so that the weights on observables in that regression are the same as the
weights on observables in the unweighted regression with the smaller F-stat.

B.3 Control function

The control function approach is predicated on the normality assumption Y1i

C1i

Y0i

 ∼ N


 (gW + c0)Wi +X ′

iµ1

gZZi +X ′
iµC

c0Wi +X ′
iµ0


,

 Σ11 Σ1c Σ10

Σ1c Σcc Σc0

Σ10 Σc0 Σcc



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Under this model,

E[Di(z, w;x)] = Φ

(
−x′µV + gWw − gZz

σV

)
where Φ is the normal CDF, µV = −µ1+µC+µ0,42 and σ2

V = Var[Vi|Xi]. I estimate this
with a first step probit; conventionally, σV would not be identified. However, as noted
by Björklund & Moffitt (1987), the generalized Roy structure allows it to be identified
here, since we can estimate the direct effect of w on treatment effects. I do this in the
second step, using the identity

E [Ydi|Di = d, Zi = z,Wi = w,Xi = x] = X ′
iµd + cdw + bdλd(E[Di(z, w;x)])

where c0 = 0, c1 − c0 = gW , b0 = Cov(V0i,Vi|Xi)
σV

, b1 = −Cov(V1i,Vi|Xi)
σV

, λ0(u) = φ(Φ−1(u))
1−u

,
and λ1(u) =

φ(Φ−1(u))
u

. I estimate this conditional expectation function by OLS. Note
the exclusion restriction that Zi does not directly enter the conditional expectation
function for Ydi. Although this is not required to estimate the model under normality,
without this exclusion restriction identification depends strongly on functional form
assumptions.

In Table 4 and Table 6, I construct control function estimates of local average
treatment effects and local average surplus effects. Let Z⊥

i = Zi − E[Zi|Wi, Xi] For a
local average treatment effect, I use

E[YiZ
⊥
i ]

E[DiZ⊥
i ]

=
E[(Yi − E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z

⊥
i ]

E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥
i ]

=
E[(E[Yi|Zi,Wi, Xi]− E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z

⊥
i ]

E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥
i ]

=
E
[∫ E[Di|Zi,Wi,Xi]

E[Di|Zi=E[Zi|Wi,Xi],Wi,Xi]
MTE(u;Wi, Xi)duZ

⊥
i

]
E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥

i ]

Focusing on the numerator in each expression. The first step follows from E[E[Yi|Zi =

E[Zi|Wi, Xi],Wi, Xi]Z
⊥
i ] = 0, which follows from an application of the law of iter-

ated expectations conditioning on (Wi, Xi). The second step follows from E[YiZ
⊥
i ] =

E[E[Yi|Zi,Wi, Xi]Z
⊥
i ]. This again follows from an application of the law of iterated ex-

pectations conditioning on (Zi,Wi, Xi). The third step is just the fundamental theorem
42This implies E[Vi|Xi] = X ′

iµV .
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of calculus, and that the marginal treatment effect equals the derivative of the condi-
tional expectation of Yi with respect to z. I therefore use the plug-in estimator of this
as my control function estimate of the local average treatment effect. Nearly identical
calculations hold for the local average surplus effect, and bias from exclusion restriction
violations. Standard errors are calculated using the delta method, and derivatives with
respect to control function parameters are estimated numerically.

C Figures
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Figure A.1: Productivity growth and groundwater withdrawals

Notes: This figure plots, for each state, the lower bound estimate of its groundwater withdrawals as a
share of recharge rate, as reported in Rodell et al. (2009), against its normalized decadal agricultural
productivity growth, calculated in a regression of log agricultural productivity on state fixed effects
interacted with year dummies, relative to Andhra Pradesh (AP). The purple line is the line of best fit,
with a slope of 2.5 and R2 = 0.63.
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