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Introduction

In this paper, we study the impacts of trade frictions on health through access to

health technologies in the context of mask manufacturing during the COVID-19 pan-

demic in Rwanda. We exploit spatial variation in exposure to domestic mask man-

ufacturing through supply networks generated by a policy that licensed a selected

few domestic textile manufacturers to produce masks. We estimate an event study

design using receipt-level transaction data and find access to manufactured masks

decreased mask prices, increased purchased quantities of domestically manufactured

masks, and reduced COVID-19 infections; the dynamics of our results suggest that

increased mask quality, rather than quantity, explains reduced infections caused by

manufactured masks.

Masks are an important non-pharmaceutical intervention to slow the spread of

viral airborne pathogens such as COVID-19 (Abaluck et al., 2020; Howard et al.,

2021). Yet, concerns over mask availability shaped public health recommendations on

a global scale, with the World Health Organization avoiding recommending healthy

individuals wear masks during early stages of the pandemic due to limited supply

(World Health Organization, 2020). Sharp increases in global demand for masks

following the rapid onset of the pandemic generated fear that supply was insufficient

and triggered export restrictions to protect domestic access (Carreño et al., 2020).

Against this background of limited mask supply and export restrictions, sub-

national trade frictions had the potential to generate regional inequities in access

to masks, and in turn the spread of COVID-19. The burden of import restrictions

on masks was likely greatest in developing countries with limited domestic mask

manufacturing (Abaluck et al., 2021), and where international trade frictions may

compound with substantial domestic trade frictions (Atkin & Donaldson, 2015; Don-

aldson, 2018). Yet, there is no direct evidence that trade frictions impact health

through access to health technologies, including masks; such evidence would comple-

ment recent work estimating sub-nationally unequal impacts of trade on health with

employment (Dorn et al., 2019; Pierce & Schott, 2020) and pollution (Bombardini &

Li, 2020) as mechanisms.

We produce causal estimates of the impacts of mask access at the onset of the

COVID-19 pandemic in the context of Rwanda. On April 17, 2020, the Rwanda Food

and Drug Administration (FDA) granted initial licenses to selected garment manu-
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facturers to produce masks. This policy was accompanied by a certification process,

ensuring that all formally traded masks met FDA filtration standards.1 We observe

that sub-Districts are more likely to source masks from the same sub-Districts they

purchased textiles from before the mask licensing policy came into effect. Since not

all textile producers were licensed to produce masks in the first months of the pol-

icy, this mechanically generated uneven access to domestically manufactured masks

across sub-Districts. Yet, the shape of textile supply chains pre-COVID-19 does not

predict pre-licensing changes in outcomes. This suggests sub-Districts that, before

COVID-19, sourced disproportionately more non-mask textiles from high and low

mask manufacturing intensity sub-Districts, would have experienced the same post-

licensing changes in outcomes if there was no domestic mask manufacturing. We use

this observation to construct a shift-share (Goldsmith-Pinkham et al., 2020) measure

of exposure to licensed domestic mask manufacturing, based on purchases by desti-

nation sub-Districts of non-mask textiles from origin sub-Districts with high and low

mask manufacturing intensity.

We construct high-frequency panel data on inter-sub-District product trade, in-

cluding prices and sales of masks, using the universe of timestamped transactions

made through Electronic Billing Machine (EBM) software from November 2019 through

April 2021. For each transaction we observe firm identifiers, product information,

prices, and quantities, for sales to both final consumers and to firms. We produce the

following four key results.

First, we find that variation in access to licensed domestically manufactured masks

generated by trade frictions affected mask prices – a one standard deviation increase

in exposure to mask manufacturing persistently reduced mask prices by 7.5%, which

corresponds to 20% of a large increase in mask prices in Rwanda that followed the

start of the COVID-19 pandemic. These impacts on prices persisted to the end of

our study period; this suggests that variation in exposure is driven by variation in

domestic trade frictions, which generated persistent decreases in mask prices in sub-

Districts more exposed to licensed mask manufacturing.

Second, we show that, while exposure to licensed domestic mask manufacturing

increased purchased quantities of domestically manufactured masks, these effects dis-

sipate rapidly. Our preferred estimates imply a price elasticity of demand for masks of

-2.1 before the introduction of universal quality standards in June. This elasticity is

1Formally traded masks comprise both domestically manufactured and imported masks.
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modestly higher than demand elasticities for other durable preventive health products

(Berry et al., 2020); we interpret this as driven by the availability of a close substi-

tute for formally traded masks in these early months of the pandemic—informally

produced non-certified masks, which we do not observe in our data on formal trans-

actions. In contrast, following the June gazetting of a decree requiring that all masks

sold in Rwanda meet the same quality standards as certified manufactured masks,

which targeted the informal sale of non-certified masks, this elasticity converges to-

wards zero. We interpret this fade-out as driven by substitution away from informal

low-quality masks in low-exposure sub-Districts to formally manufactured masks fol-

lowing the decree.

Third, access to licensed domestically manufactured masks slowed the spread of

COVID-19. As an alternative to sub-District data on COVID-19 cases, we use EBM

data on purchases of fever medicine as a proxy for active COVID-19 infections. We

find a one standard deviation increase in manufactured mask exposure initially re-

duced the monthly growth rate of infections by 2.9%; following the introduction of

universal quality standards, we find no further impacts on growth rate, while level

impacts on infections persisted. The implied impacts of certified masks on the trans-

mission of COVID-19, the first in the context of Sub-Saharan Africa, are comparable

to existing work in the United States (Chernozhukov et al., 2021) and rural South

Asia (Abaluck et al., 2021). Our results also contribute more broadly to a litera-

ture that estimates the impacts of preventive health interventions at scale (Miguel &

Kremer, 2004; Bleakley, 2007, 2010); a counterfactual with reduced domestic mask

manufacturing suggests large benefits of licensing, with averted hospitalization costs

an order of magnitude larger than fiscal costs.

Lastly, the dynamics of our results suggest that mask quality, as opposed to in-

creased mask use, explains the impact on COVID-19 infections. While we do not

directly observe mask quality, we no longer see impacts of early exposure to licensed

manufacturing on the spread of COVID-19 after the June decree introducing universal

quality standards, just as the impacts on certified manufactured mask purchases fade

out. In contrast, our impacts on prices persist, while we would expect a reduction in

prices to drive any use channel. Anecdotal evidence also supports mask quality as a

channel. Mask use was high, even before the June decree, as starting April 19 Rwanda

had strict enforcement of mask mandates and near-universal compliance. However,

prior to the June decree, standards for mask quality were only implemented by, and
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enforced for, licensed mask manufacturers; masks meeting these standards display

much greater aerosol filtration (Konda et al., 2020). These results imply policies that

increase the supply of certifiably high-quality masks are strongly complementary to

policies that increase mask use (Abaluck et al., 2021).

The rest of the paper is structured as follows. Section 1 describes the data and

the policy environment; Section 2 describes our identification and empirical strategy,

and presents our estimates of impacts of domestic certified mask manufacturing; and

Section 3 concludes.

1 Data and context

1.1 Data

We use multiple administrative data sources to study the market for masks at the

outset of the pandemic in Rwanda. Our study sample begins in November 2019 and

extends through April 2021, one year following the licensing of mask manufacturers.

In this section, we briefly describe each dataset, its coverage, and the construction of

its associated variables, with additional details left to Appendix A.

EBM Our primary source of data is the universe of digitally signed and times-

tamped software issued EBM receipts collected by Rwanda Revenue Authority (RRA)

between November 2019 and April 2021, allowing us to track product-level sales be-

tween firms and final consumers. EBMs record receipts issued by businesses to sup-

port the collection of VAT in Rwanda, and are mandated for use by VAT taxpayers.

In November 2019, these data recorded 81.8 billion Rwandan Francs (RwF) of value

added, equivalent to 10.4% of monthly GDP or 16.9% of VAT declared turnover.

We leverage these receipts to construct firm-product transaction-level data on

prices and quantities. First, each EBM is identified by a unique Sales Data Controller

(SDC) identifier, which we link to Taxpayer Identification Numbers (TIN) and, in

turn, firm registration data to identify selling firms. When a receipt is issued for a

sale to other VAT taxpayers, purchasing firms must provide their TIN. To construct

the sub-District of both buyers and sellers, we assume that non-VAT taxpayer final

consumers are located in the same sub-District as the selling firm. For the majority of

our analysis, we aggregate data to the buyer sub-District, which constitutes credible
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markets; the average sub-District has a population of 32,000 individuals and 1,000

registered firms. Second, for each transacted item on a receipt, we observe a product-

classification UNSPSC code and a string description; we use these to identify textile

products and masks, and we construct firm-product identifiers using the selling firm

and product string description pair. Third, we classify masks as manufactured when

sold by a firm that was issued a mask manufacturing license from the FDA. In Section

2.1.1, we use this data on mask and textile purchases and sales to construct sub-

District mask manufacturing exposure; our primary analysis sample comprises the 239

sub-Districts for which we observe non-mask textile purchases necessary to construct

mask manufacturing exposure.

We observe over 75,000 transactions covering nearly 5,000,000 masks, approxi-

mately 1.6 masks per adult in our primary analysis sample. On average, prices are

680 RwF (0.66 USD) per mask.2 Production of masks is spatially concentrated rel-

ative to consumption; aggregating to the sub-District level, the average purchasing

(selling) sub-District buys from (sells to) 2.1 (16.4) sub-Districts.

Customs We construct measures of border prices of masks using customs data

containing the universe of imports by Rwandan firms. Just as for EBM, we identify

mask imports using a combination of product codes and product string descriptions,

and all imports are timestamped. We then use the combination of the point of entry

and the TIN of the importing firm as identifiers to construct an equivalent of firm-

product.

Firm registration data We construct firm characteristics using formal registra-

tions of firms. Each firm is identified by a unique TIN, and the registrations contain

the firm’s ISIC sector classification (which we use to identify textile manufacturers)

and sub-District.

Census We construct data on socioeconomic characteristics of sub-Districts using

the 2012 Population and Housing Census.

2Basic descriptive statistics from the EBM data, and additional details on its coverage and
construction, are presented in Appendix A.1.
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1.2 Context

Our analysis of the impacts of mask manufacturing covers the early stages of the

COVID-19 pandemic in Rwanda. We present the timeline of key events and policies

that relate to the mask mandate in Figure 1a, leveraging fortnightly cabinet an-

nouncements and daily COVID-19 updates. The Ministry of Health (MINISANTE)

announced the first case of COVID-19 in Rwanda on March 14, 2020, and recom-

mended the use of masks in health care settings. On March 22, the Prime Minis-

ter announced a lockdown including school closures, the suspension of international

travel, a work-from-home mandate, and the prohibition of non-essential movement,

all with meaningful impacts on economic activity (Byrne et al., 2021). A compulsory

mask mandate for all public settings was introduced on April 19, just before lockdown

restrictions were partially lifted on May 4. This mandate was strictly enforced: deter-

rence measures included fines in Kigali City Province, and complementary measures

to promote compliance included infomercials by the national broadcaster and educa-

tion campaigns by the Rwanda National Police. These measures were effective—by

early June, according to the Innovations for Poverty Action’s RECOVR survey, 95%

of households always wore a mask when they went out in public.
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Figure 1: Timeline

(a) Mask & health policy

(b) Domestic and border prices

(c) Mask turnover at mask importers and manufacturers

Notes: Figure 1a presents a timeline of mask (in red) and mask manufacturer (in black) policies
in Rwanda during our study period. Figure 1b presents a monthly time series of log changes in
import (in red) and domestic (in black) mask prices relative to January 2020. Figure 1c presents a
bimonthly time series of mask turnover at importers (in red) and manufacturers (in black).
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Domestic mask manufacturing To increase the availability of certifiably high-

quality masks, the Rwanda FDA issued licenses to a few selected textile manufacturers

to produce surgical and barrier masks. We present the timeline of key policy actions

targeting the manufacturing of certified masks in Rwanda in Figure 1a. On March

21, 2020, in response to reported shortages of imported masks, the Ministry of Trade

and Industry (MINICOM) imposed price restrictions and the FDA issued a public

announcement citing concerns about the sale of substandard masks. To combat this

shortage and to mitigate concerns about the sale of unregulated low-quality masks, the

FDA licensed 21 garment manufacturers that had submitted applications to produce

masks on April 17, two days before the national mask mandate. Licensing was coupled

with additional incentives to engage in mask production—MINICOM announced the

intent to facilitate access to machines and raw materials, and a VAT exemption

for domestically manufactured masks was granted by the Ministry of Finance and

Economic Planning on April 30.

To ensure masks minimized transmission of COVID-19, quality standards were

progressively scaled up, starting with licensed manufacturers and eventually covering

all mask sales nationally. As part of the April 17, 2020 licensing of textile manufactur-

ers to produce masks, the FDA enforced quality standards on manufacturers through

direct assessments of manufactured mask quality. These standards included speci-

fications for filtration, penetration, and breathability of masks, and were consistent

with product characteristics known to maximize aerosol filtration efficiency (Konda

et al., 2020). Similar standards were gazetted into law in June, covering all masks and

manufacturers. These standards constituted the benchmark for subsequent audits.

Similar to enforcement in the earlier months of the pandemic, licensed manufacturers

submitted their masks to quality assurance tests prior to leaving the factory. Firm

audits were supplemented by retailer audits, and substandard masks identified by

audits were removed from markets. In line with the gazetted guidelines, compliant

masks were affixed with an RSB standardization mark. We present additional details

on these requirements and specifications and enforcement in Appendix B.
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1.3 Descriptive evidence on domestic mask manufacturing

and mask prices

To motivate our analysis of the impacts of exposure to domestic mask manufacturing,

we present descriptive evidence in Figure 1 that licensing, and associated support,

increased domestic mask manufacturing and decreased mask prices. To implement

this analysis, we construct a time series of domestic and border prices of masks in

Rwanda, and compare to total turnover by domestic mask importers and manufac-

turers; details on the construction of these time series are in Appendix A.4.

First, large increases in both domestic prices and turnover of masks followed mask

mandates in healthcare settings on March 14, 2020 and in all public settings on April

19, 2020. We interpret these policies as generating a large increase in demand for

masks, which would increase both prices and quantities in the presence of an upward-

sloping supply of masks.

Second, domestic mask prices began to fall toward pre-COVID-19 levels starting

in May, 2020, coinciding with the peak of domestic manufacturing of masks that

followed initial licensing of manufacturers on April 17. This coincidence provides

suggestive evidence that domestic manufacturing decreased mask prices, but is in-

sufficient to establish causality—alternative explanations that could have caused the

observed decreases in the price of masks include increases in mask imports or decreases

in demand for masks due to the reuse of masks. In Section 2, we therefore isolate

exogenous variation in exposure to mask manufacturing across sub-Districts to esti-

mate the impacts of mask manufacturing on purchases of domestically manufactured

masks, mask prices, and COVID-19 infections.

2 Impacts of domestic mask manufacturing

2.1 Empirical strategy

2.1.1 Construction of mask manufacturing exposure

To estimate the impacts of access to mask manufacturing on purchases of domestically

manufactured masks, mask prices, and COVID-19 infections, we begin with the fol-

lowing observation: purchases of manufactured masks at “destination” sub-Districts

depend on their exposure through trade networks to mask manufacturers at “origin”
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sub-Districts.

We characterize origin sub-Districts o by their mask manufacturing intensity,

which we define to be the fraction of their total sales that are manufactured masks.

Let Xod,t and XM
od,t denote expenditures, and expenditures on manufactured masks,

respectively, by destination sub-District d from origin sub-District o in month t. We

define

Mask manufacturing intensityo ≡
∑

d,tX
M
od,t∑

d,tXod,t

(1)

We leverage our definition of mask manufacturing intensity to construct exposure,

through trade networks, of destination sub-Districts to mask manufacturing. We

construct a shift-share (Bartik, 1991) measure that eliminates potential dependence

of exposure on demand for manufactured masks in two steps. First, we use pre-

licensing purchases of textiles excluding masks by destination sub-District d from

origin sub-District o, XT
od,0, to characterize trade networks. Second, we measure the

mask manufacturing intensity of origin o excluding the purchases of destination sub-

District d.3 We then define

Mask manufacturing exposured ≡
∑
o

XT
od,0∑

o′ X
T
o′d,0︸ ︷︷ ︸

pre-licensing non-mask
textile share

∑
d′ ̸=d,tX

M
od′,t∑

d′ ̸=d,tXod′,t︸ ︷︷ ︸
leave-out mask

manufacturing intensity

(2)

We plot variation in log mask manufacturing exposure across sub-Districts in Figure

2a, and for comparison plot variation in mask manufacturing intensity in Figure 2b.

3The exclusion of destination sub-District d’s mask purchases follows a suggestion by Goldsmith-
Pinkham et al. (2020), and in Table A5 we show this does not affect our results.

10



Rwanda Kigali

(a) logMask manufacturing exposured ≡ log
∑
o

XT
od,0∑

o′ X
T
o′d,0

∑
d′ ̸=d,tX

M
od′,t∑

d′ ̸=d,tXod′,t

Rwanda Kigali

(b) Mask manufacturing intensityo ≡
∑

d,tX
M
od,t∑

d,tXod,t

Figure 2: Mask manufacturing exposure and intensity vary substantially across sub-
Districts

Notes: Figure 2a plots variation in mask manufacturing exposure across sub-Districts. Figure 2b
plots variation in mask manufacturing intensity across sub-Districts. The left side in each panel
plots variation across Rwanda, while the right side in each panel plots variation within Kigali City
Province.
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2.1.2 Estimating the impacts of mask manufacturing exposure

We estimate the impacts of exposure to licensed domestic mask manufacturing on

mask purchases, mask prices, and the spread of COVID-19 using an event-study

design. For outcome ydt measured in sub-District d in month t, we estimate the

following two-way fixed effects specification:

ydt = βt logMask manufacturing exposured +X ′
dδt + θd + γt + ϵdt (3)

θd and γt are a set of sub-District fixed effects and month fixed effects, respectively.

X ′
dδt allows time-varying coefficients on sub-District characteristics that may be cor-

related with both mask manufacturing exposure and time trends (Duflo, 2001). Our

coefficients of interest are βt, the impact of log mask manufacturing exposure in month

t. We use March 2020, one month prior to the initial licensing of textile manufac-

turers to produce multi-layer masks, as the reference month. Coefficients βt should

therefore be interpreted as impacts on changes in outcomes relative to March 2020.

For inference, we cluster standard errors at the sub-District-level, the level at which

mask manufacturing exposure varies.

To compactly present our estimates, we estimate two variants of Equation 3.

First, we estimate a difference-in-difference specification, in which we instead interact

log mask manufacturing exposure with a post-licensing indicator. This specification

estimates the impact of mask manufacturing exposure on average outcomes from

April 2020 through April 2021, relative to average outcomes from November 2019

through March 2020. Second, we instead interact log mask manufacturing exposure

with separate post-licensing indicators for pre-national quality standards (April 2020

through June 2020) and post-national quality standards (July 2020 through April

2021), estimating impacts separately for these two periods.

Our estimates of the impacts of mask manufacturing exposure will be unbiased

if mask manufacturing exposure is exogenous to other determinants of changes in

the availability and prices of masks, and the spread of COVID-19. For this exogene-

ity to hold, we assume that destination sub-Districts that disproportionately source

other textiles from high mask manufacturing intensity origin sub-Districts would have

had similar changes to other sub-Districts in demand or supply of certified masks

and COVID-19 infections absent licensed domestic mask manufacturing (Goldsmith-

Pinkham et al., 2020). For this assumption to hold, it is particularly important that
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we have excluded masks when constructing our measures of other textile sourcing, to

eliminate their dependence on mask demand. In contrast, it is unlikely that idiosyn-

cratic shocks to demand or supply of masks will be correlated with the sourcing of

non-mask textiles (predominantly clothing).

We have three primary outcomes of interest in Equation 3: log buyer prices of

masks, per adult mask purchased quantities from manufacturers, and COVID-19

infections. We adapt Equation 3 or its estimation for two of these outcomes. First,

when log buyer prices of masks are the outcome of interest, we do not aggregate to

the destination sub-District-month, as changes in aggregated prices would include

changes in the firm-product composition of purchased masks. We instead construct

log buyer prices as mean log prices at the destination sub-District-by-month-by-firm-

product level, and include firm-product fixed effects in Equation 3 to control for any

unobservable mask characteristics that might influence price, such as style or material.

Second, when COVID-19 infections are the outcome of interest, we instead use the

number of purchases of paracetamol, a commonly recommended fever medicine, as a

proxy for COVID-19 infections.4 To produce estimates that are readily comparable

to existing work, we estimate impacts on changes in the log number of purchases

of paracetamol. As the number of purchases of paracetamol is frequently 0 in a

given sub-District, we estimate Equation 3 using Poisson pseudo maximum likelihood

(Wooldridge, 1999; Silva & Tenreyro, 2006).

2.1.3 Specification tests

We test the robustness of our assumption of the exogeneity of mask manufacturing

exposure in three ways, adapting suggestions from Goldsmith-Pinkham et al. (2020)

for difference-in-differences with shift-share instruments to our event-study design;

the results of all three tests corroborate the exogeneity of exposure to policy-induced

mask manufacturing. First, in Section 2.2 we show log mask manufacturing exposure

is weakly correlated with exogenous sub-District characteristics, and in Section 2.3 we

show our results are robust to including or excluding any sub-District characteristics

4We use purchases of paracetamol as a proxy because we do not have data on sub-District
COVID-19 infections as COVID-19 testing in Rwanda did not become widespread until August
2020. In Appendix Table A4, we show that increased purchases of paracetamol are associated with
increased COVID-19 infections at the District-level. As COVID-19 infections are not the sole cause
of fever, and therefore of purchases of paracetamol, we discuss how this impacts the interpretation
of our magnitudes in Appendix C.
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Xd correlated with mask manufacturing exposure from Equation 3. Second, in Section

2.3 we show log mask manufacturing exposure is uncorrelated with trends in outcomes

prior to licensing. Third, we show in Section 2.3 that replacing our measure of leave-

out mask manufacturing intensity with its normalization by Province-specific mean

leave-out mask manufacturing intensity does not affect our results; this normalization

changes the weights placed on destination sub-Districts’ exogenous non-mask textile

purchase shares across origins (Goldsmith-Pinkham et al., 2020).

Equation 3 does not feature a staggered design, and therefore is not subject to

recent criticisms of two-way fixed effects specifications with a staggered rollout (e.g.,

de Chaisemartin & D’Haultfœuille, 2020). However, it is similar to specifications an-

alyzed in recent work that demonstrates the parallel trends assumption is insufficient

for identification in difference-in-difference designs with continuous treatment (in our

context, log mask manufacturing exposure) when treatment effect heterogeneity is

correlated with treatment (Callaway et al., 2024). Here, a stronger exogeneity as-

sumption is sufficient for identification, and we test this assumption in Section 2.2.

A similar issue emerges when controls are interacted with time fixed effects in a two-

way fixed effects specification, even when treatment is binary (Borusyak et al., 2024).

In Section 2.3, we show that our results are robust to the inclusion or exclusion of

controls interacted with time fixed effects.

Equation 3 jointly tests for parallel trends pre-licensing and estimates impacts

post-licensing, which can introduce bias from pre-testing (Roth, 2022); in Figure A2

we follow Borusyak et al. (2021) and show our event study estimates are robust to an

approach that eliminates this bias.

2.2 Balance

In Columns 1 and 2 of Table 1, we begin by estimating the association between sub-

District characteristics and mask manufacturing intensity; we should not expect mask

manufacturing intensity to be exogenous, as sub-Districts for which sales of masks by

licensed textile manufacturers comprise a large share of turnover are likely to be very

different from sub-Districts which do not have any licensed textile manufacturers.

Consistent with this, we find that high mask manufacturing sub-Districts have higher

turnover and purchase more inputs, and are more likely to have a textile manufac-

turer. Omnibus F-tests strongly reject the joint null of no association between mask
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manufacturing intensity and sub-District characteristics.

In contrast, in Columns 3 through 6 of Table 1, we show that mask manufacturing

exposure is more weakly correlated with destination sub-District characteristics. This

result holds across specifications that do and do not control for Province fixed effects,

and specifications that do and do not replace leave-out mask manufacturing inten-

sity with its normalization by Province-specific mean leave-out mask manufacturing

intensity. We do consistently find statistically significant differences at the 10% level

across high and low mask manufacturing exposure sub-Districts for four variables:

high mask manufacturing exposure sub-Districts have more input purchases, greater

population density, are more educated, and have lower employment rates. In Section

2.3, we therefore show that our results are robust to including or excluding as controls

these four sub-District characteristics interacted with time fixed effects.
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Table 1: Mask manufacturing exposure is weakly correlated with sub-District char-
acteristics

Mask manufacturing intensity log Mask manufacturing exposure

(1) (2) (3) (4) (5) (6)

log turnover 23.69 19.93 0.29 0.19 0.34 0.33
(13.84) (6.80) (0.19) (0.17) (0.31) (0.25)
[0.09] [0.004] [0.14] [0.25] [0.28] [0.18]

log purchases 28.73 26.48 0.28 0.23 0.35 0.33
(10.35) (3.69) (0.07) (0.06) (0.12) (0.09)
[0.01] [0.00] [0.000] [0.000] [0.005] [0.000]

log population density −0.38 0.78 0.07 0.01 0.17 0.10
(5.19) (1.66) (0.04) (0.03) (0.07) (0.05)
[0.95] [0.65] [0.07] [0.79] [0.02] [0.07]

% completed secondary school 27.81 1.68 2.02 1.14 2.62 2.04
(69.11) (14.12) (0.47) (0.30) (0.88) (0.57)
[0.69] [0.91] [0.000] [0.000] [0.003] [0.000]

% employed −19.19 −10.29 −0.40 −0.28 −0.49 −0.48
(21.15) (13.36) (0.12) (0.10) (0.21) (0.15)
[0.37] [0.45] [0.002] [0.01] [0.02] [0.002]

any textile manufacturer 11.83 6.91 0.04 −0.02 0.05 0.03
(2.02) (3.78) (0.02) (0.03) (0.03) (0.05)
[0.00] [0.07] [0.02] [0.48] [0.12] [0.50]

log population −0.66 −8.77 0.02 0.04 −0.01 0.07
(1.50) (5.78) (0.01) (0.03) (0.02) (0.05)
[0.67] [0.13] [0.27] [0.11] [0.57] [0.21]

Province FE X X X
Normalized intensity X X
# clusters (sub-districts) 317 317 239 239 239 239
Omnibus F 289.16 44.96 4.02 4.39 2.07 3.32

[0.000] [0.000] [0.000] [0.000] [0.05] [0.002]

Notes: Columns 1 and 2 report coefficients from regressions of sub-District characteristics on mask
manufacturing intensity, while Columns 3 through 6 report coefficients from regressions of sub-
District characteristics on log Mask manufacturing exposure. Robust standard errors are clustered at
the sub-District level are reported in parentheses, and p-values are reported in brackets. Columns 2,
4, and 6 control for Province fixed effects, while Columns 5 and 6 and normalize mask manufacturing
intensity by province average mask manufacturing intensity before constructing mask manufacturing
exposure. In 35 sub-Districts log turnover is not defined where other sub-District characteristics are:
we drop these sub-Districts in regressions of log turnover on intensity and exposure.
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2.3 Results

2.3.1 Impacts of mask manufacturing exposure

We now present our results on the impact of mask manufacturing exposure on mask

prices, purchases of masks from manufacturers, and COVID-19 infections. Table

2 reports estimates of these impacts from Equation 3; we focus our discussion on

estimates from Columns 1, 3, and 5 from our most parsimonious specification without

controls, as estimates are quantitatively and qualitatively similar when we include

controls. Similarly, Figure 3 presents month-by-month event study coefficients from

the specification without controls. All impacts are relative to March 2020, the month

before the licensing of domestic textile manufacturers to produce high-quality masks

was announced.
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Table 2: Mask manufacturing exposure increases purchases of masks from manufac-
turers, decreases mask prices, and reduces COVID-19 infections

Dependent variable

# manuf. masks

# adults
log mask price # paracet. purch.

(1) (2) (3) (4) (5) (6)

Panel A: Difference-in-Differences

log Mask manufacturing exposured
×Postt

0.006
(0.002)
[0.001]

0.004
(0.002)
[0.108]

-0.052
(0.031)
[0.096]

-0.096
(0.035)
[0.006]

-0.268
(0.140)
[0.056]

-0.247
(0.135)
[0.067]

Panel B: Universal quality standards

log Mask manufacturing exposured
×Postt
×Pre-universal quality standardst

0.013
(0.004)
[0.001]

0.009
(0.006)
[0.094]

-0.075
(0.029)
[0.011]

-0.112
(0.034)
[0.001]

-0.202
(0.115)
[0.078]

-0.120
(0.101)
[0.237]

log Mask manufacturing exposured
×Postt
×Post-universal quality standardst

0.004
(0.002)
[0.007]

0.002
(0.002)
[0.350]

-0.042
(0.033)
[0.213]

-0.088
(0.037)
[0.018]

-0.280
(0.151)
[0.063]

-0.273
(0.149)
[0.067]

Estimation method OLS OLS OLS OLS Poisson Poisson

Firm-product FE X X

Destination sub-District FE X X X X X X

Month FE X X X X X X

Normalized intensity X X X

Controls × Month FE X X X

# observations 4,302 4,302 9,748 9,748 2,502 2,502

# clusters (sub-Districts) 239 239 239 239 139 139

Notes: Columns 1 through 6 report coefficients on mask manufacturing exposure interacted
with month fixed effects from estimates of Equation 3. Robust standard errors are clustered
at the sub-District level and p-values are reported in brackets. All columns include destina-
tion sub-District fixed effects and month fixed effects. Columns 1 and 2 include firm-product
fixed effects, while Columns 5 and 6 estimate coefficients using Poisson pseudo maximum
likelihood. Columns 2, 4, and 6 include month fixed effects interacted with controls for
Province fixed effects, log population density, log purchases in EBM, the employment rate
and secondary school completion and normalize mask manufacturing intensity by province
average mask manufacturing intensity before constructing mask manufacturing exposure.
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Figure 3: Mask manufacturing exposure increases purchases of masks from manufac-
turers, decreases mask prices, and reduces COVID-19 infections

(a) Quantity of masks purchased from manufacturers per adult

(b) log mask price

(c) log purchases of paracetamol

Notes: Figure 3 presents monthly event study estimates of Equation 3. Confidence intervals use
robust standard errors are clustered at the sub-District level and presented at 5% significance. All
figures include destination sub-District fixed effects and month fixed effects. Figure 3b includes firm-
product fixed effects, while Figure 3c presents estimated coefficients using Poisson pseudo maximum
likelihood.
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First, exposure to mask manufacturing causes persistent decreases in the price of

masks through greater access to mask markets. A one standard deviation increase in

mask manufacturing exposure reduced mask prices by 7.5%. This estimate represents

a lower bound in that it does not account for across sub-District general equilibrium

effects through markets for non-manufactured masks. We take two approaches to

interpreting the magnitude of this effect. First, April 2020 mask prices were 197%

higher in Rwanda than in January, associated with the large increase in demand

for masks during the COVID-19 pandemic, while by June, prices had fallen 30%

below April levels. The impacts of mask manufacturing exposure, relative to the

April-to-June decrease in prices, suggest a substantial share of this price decrease is

explained by domestic mask manufacturing. Second, as mask manufacturing exposure

is constructed from differences across sub-Districts in non-mask textile trade flows,

we interpret these impacts as being driven by persistent differences in costs of trade

between sub-Districts. Building on this interpretation, we combine our estimated

impacts of mask manufacturing exposure on prices with estimates from a gravity

regression of log textile trade flows on log distance in Table A3; the resulting back-of-

envelope calculation implies that a 10% decrease in distance to mask manufacturing

at average mask manufacturing exposure causes a 0.3% decrease in mask prices.5

Second, the persistent decrease in mask prices caused by exposure to mask manu-

facturing caused large, temporary increases in purchased mask quantities from manu-

facturers prior to the enforcement of quality standards nationally. As shown in Figure

3, impacts on purchased mask quantities from manufacturers are large and significant

from April through June, but fade significantly thereafter; our estimates in Table 2

imply that impacts post-June are 70% smaller than impacts April-through-June. We

argue that our results in the initial months reflect substitution away from informal

non-certified masks into domestically manufactured certified masks in sub-Districts

with high mask manufacturing exposure, while the declining impacts are driven by

this same substitution occurring in sub-Districts with low mask manufacturing ex-

posure due to the June gazetting of quality standards for masks sold in Rwanda.

Quality standards were already met by masks produced by licensed manufacturers,

as we discuss in Section 1.2. As a result, these standards primarily targeted the infor-

5For comparison, Donaldson (2018) estimates a 10% decrease in distance to the source of salt
causes a 0.9%–1.7% price decrease in salt prices in India; that our estimate is somewhat smaller is
likely explained by the shorter distances in our context.
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mal sale of non-certified masks, while mask purchases in our data are of domestically

manufactured and imported masks, which likely already met these standards.6 In

summary, the introduction of a ban on a substitute product (informal non-certified

masks) decreased the elasticity of demand for domestically manufactured masks, and

particularly so when coupled with strictly enforced mask mandates, and this decreased

the quantity response of certified manufactured masks to the persistent price decrease

caused by exposure to mask manufacturing.

To interpret magnitudes of the impacts of mask manufacturing exposure on quan-

tities, we calculate that our pre-universal quality standards estimate of the impacts

on prices and quantities imply a price elasticity of demand of -2.1.7 This estimated

elasticity is larger than comparable estimates from Berry et al. (2020) for water filters,

consistent with the availability of a close substitute for certified manufactured masks

(non-certified masks) in these early months.8

Third, licensed domestic mask manufacturing slowed the spread of COVID-19

at early stages of the pandemic; however, trade frictions reduced access to certified

masks in less exposed sub-Districts, temporarily increasing infection growth and per-

sistently increasing the level of infections in less exposed sub-Districts. While we only

observe impacts on purchases of paracetamol, we assume they are a valid proxy for

sub-District COVID-19 infections. We estimate their association using much more

aggregated District-level data on COVID-19 infections in Appendix Table A4, and

find that a 1% increase in purchases of paracetamol is associated with a 0.3% increase

in COVID-19 infections; we scale impacts on purchases of paracetamol by this coef-

ficient to recover impacts on COVID-19 infections. To interpret our point estimates,

we scale impacts on COVID-19 infections by the standard deviation of mask man-

ufacturing exposure—our estimates imply that, before the introduction of universal

quality standards, a one standard deviation increase in mask manufacturing expo-

sure reduced the monthly growth rate of COVID-19 infections nationally by 2.9%.

6As we expect both domestically manufactured and imported masks are high quality, we might
expect both types to impact the spread of COVID-19.

7To calculate this elasticity, we divide the impact on mask quantities from manufacturers as a
share of the adult population by its average value in the April-through-June period before universal
quality standards (0.081), and divide this by impacts on log buyer price. In results available upon
request, we recover somewhat larger elasticities when we instead use Poisson pseudo maximum
likelihood estimates of impacts on expected log mask quantities from manufacturers per adult.

8Berry et al. (2020) find elasticities of between 0 and 4 over a range of prices, but elasticities
below 1 closer to break-even prices.

21



Similar to estimates of price impacts, this estimate reflects a lower bound, because of

both across-sub-District transmission of COVID-19 and any across sub-District gen-

eral equilibrium price effects. While impacts on COVID-19 infections grew steadily

before the introduction of universal quality standards in June, they remain constant

after—this implies that, while the impacts of domestic mask manufacturing on infec-

tion growth persist through June, they dissipate after. This however leaves persistent

impacts on the level of COVID-19 infections.

2.3.2 Interpreting impacts of mask manufacturing exposure on infections

To explain the dynamics of impacts on COVID-19 infections, we argue that the local

impacts of exposure to mask manufacturing that we document are mediated by sub-

stitution away from informally produced masks toward formally manufactured masks,

rather than by increases in the use of masks. As discussed in Section 1.2, Rwanda

had strict enforcement of mask mandates and high compliance starting April 19,

suggesting that we should not expect there to be differences in mask use between

sub-Districts with high and low exposure to licensed mask manufacturing; there may

instead be differences in the types of masks used (and, specifically, in their quality).9

While we do not directly observe the quality of informally manufactured masks in our

data, the dynamics of these impacts lend support to quality as the main mechanism

driving a wedge in COVID-19 infections across high- and low-exposure sub-Districts.

We use the fact that, starting in June, national standards for mask quality (which

already applied to certified manufacturers) were expanded to non-licensed manufac-

turers, shutting down the informal sales of masks, while licensing was extended to all

formal garment manufacturers. Should quality be the main mechanism underlying

our results, we should then see the impacts of mask manufacturing exposure on both

manufactured mask purchases and COVID-19 infection growth fade over time. This

is exactly what we observe.

The implied impacts of certified mask use on COVID-19 infections, based on our

estimates, are consistent with empirical estimates of the impacts of high-quality masks

from other contexts. We calculate impacts of certified mask use by dividing our pre-

universal quality standards impacts on monthly growth in COVID-19 infections by

our pre-universal quality standards impacts on mask purchases from licensed manu-

9According to the Innovations for Poverty Action RECOVR survey, 95% of households always
wore a mask when they went out in Public.
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facturers per adult. As mask mandates were strictly enforced, we interpret this scaled

estimate as the effect of shifting a sub-District from limited use of certified masks (not

purchasing formally manufactured masks) to universal use of certified masks (exclu-

sively purchasing formally manufactured masks) at the early stages of the pandemic.

We find that universal certified mask use reduces monthly infection growth by 53%.

In Appendix C, we calculate estimates of closely related parameters from existing

work; mask mandates for employees in public-facing businesses in the United States

reduce monthly case growth by 35% (Chernozhukov et al., 2021), while surgical mask

use reduces monthly infection growth by 18% in rural Bangladesh (Abaluck et al.,

2021). Both estimates are statistically indistinguishable from ours; we note that the

latter estimate is of impacts on villages (much smaller than sub-Districts) for which

cross-village spillovers are likely to render estimates more conservative. That these

three estimates are comparable is consistent with large effects of mask quality on

COVID-19 transmission, in line with evidence from the lab (Konda et al., 2020) and

from the field (Abaluck et al., 2021).

Our estimates of the impacts of mask manufacturing exposure do not account for

any across sub-District general equilibrium effects; however, the shape of the supply

of manufactured masks determines the effect of reductions in trade costs to mask

manufacturing origins, conditional on licensing. When supply is fully elastic, these

reductions in trade costs have no impacts on origin prices, and general equilibrium

effects on manufactured mask prices are equal to partial equilibrium effects. In con-

trast, when supply is fully inelastic, these reductions in trade costs have no impacts

on the production of manufactured masks; as a consequence, absent nonlinearities

in the effects of manufactured mask purchases on COVID-19 infections, there are

no aggregate impacts of reductions in domestic trade costs on manufactured mask

purchases and, therefore, on COVID-19 infections.

3 Conclusion

In this paper, we show that an industrial policy aimed to increase the supply of high-

quality masks slowed the spread of COVID-19 in Rwanda. We leverage the licensing

of textile manufacturers to produce high-quality masks as a shock to mask production.

To establish causality, we exploit the fact that sub-Districts are more likely to source

masks from the same sub-Districts from which they source non-mask textiles, and
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yet non-mask textile sourcing does not predict pre-licensing changes in sub-District

outcomes and is weakly associated with sub-District characteristics. Our results show

licensing decreased mask prices and slowed the spread of COVID-19 in the early stages

of the pandemic through increased access to formally manufactured masks. A cost-

benefit calculation suggests averted hospitalization costs from estimated impacts on

reduced COVID-19 infections were conservatively an order of magnitude larger than

the fiscal costs of the VAT exemption for domestic mask manufacturing.10

We establish three key results: exogenous exposure to licensed mask manufactur-

ing decreased mask prices, increased purchases of formally manufactured masks, and

reduced COVID-19 infections. Although we do not directly observe mask quality, the

dynamics of these impacts in the Rwandan context, where mask mandates were well

enforced, suggest that increased quality of masks, rather than increased use, explains

our results. Taken together, these results confirm the notion that constrained sup-

ply of high-quality masks accelerated the spread of COVID-19 at the early stages of

the pandemic. While our results leverage sub-national variation in exposure to mask

manufacturing, they suggest a similar role of access to masks in explaining interna-

tional variation in the progression of the pandemic—i.e., there were not enough good

masks.

10Details of this calculation are in Appendix D.
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A Data appendix

A.1 EBM data

We use the universe of EBM transactions made through EBM II as our original data

from November 2019 through August 2020. EBM II is a software-based teller system

introduced in 2018 as an alternative to traditional physical EBMs (EBM I).A1 We

restrict to data in November 2019 and later, because the number of active EBM II

devices in November increased by 50% relative to October, as part of a large EBM II

registration drive.A2

EBM is mandated for use by VAT taxpayers, described in Appendix A.3. Receipts

issued by registered taxpayers are transmitted via an internet connection to RRA. In

November 2019, EBM II recorded 81.8 billion RwF of value added, or 10.4% of GDP

on 470,000 receipts.

Each EBM is identified by a unique Sales Data Controller (SDC) ID, and issues

receipts which are digitally signed with a unique Sales Data Controller Receipt Sig-

nature (SDCS). A fictitious EBM receipt is depicted in Appendix Figure A1. Each

receipt enumerates the transacted items, and records the prices at (and quantities in)

which they were sold.

EBM II receipts include both a United Nations Standard Products and Services

Code (UNSPSC) classification code and detailed item descriptions for each item. We

refer to the item description as the product. Since each SDC is associated with a

unique Taxpayer Identification Number (TIN), the seller is identified in all transac-

tions. If the buyer provides their unique TIN for the transaction, both the buyer and

the seller are identified by the receipt.A3 Receipts are timestamped with the date and

time of issue.A4

A1EBMs, or Electronic Billing Machines, are no longer exclusively physical machines. For this
reason, Electronic Invoicing Systems (EIS) nomenclature is used as an umbrella term for both
physical and digital/software-based receipt generating systems. To align with the colloquial usage
in Rwanda, in this Appendix we refer to any official receipt generating system as EBM, and delineate
versions when referring to any specific form of EBM (EBM I, EBM II). In the body of the paper,
for parsimony we refer to EBM II as EBM, both because we do not use EBM I data for our analysis
and also because of the relatively broad coverage of EBM II.

A2Although EBM I offers more coverage before November 2019, these receipts are not compre-
hensively stored in a machine readable format.

A3Since firms require receipts to claim input tax credits, we consider unidentified buyers as final
consumers.

A4While transmission of the receipt to RRA can be delayed, either if software is malfunctioning
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While an SDC is associated with one TIN, a firm may have multiple EBMs. Since

we do not observe the location of each SDC, we assume that the EBM is located in

the same sub-District as the firm, which we identify using firm registration data (see

Appendix A.3 for a description of firm registration data). In November 2019, 95.5%

of EBM II taxpayers reported having only one EBM II device.

Since most EBM receipts identify both a buyer and a seller, we are able to map

mask supply chains from the sub-District of the seller to the sub-District of the buyer.

We retain a receipt-by-firm-product dataset (aggregated to a buyer sub-District-by-

firm-product-by-month dataset for our main analysis) to study mask prices and con-

struct a balanced buyer sub-District-by-month dataset to study purchases of masks

and paracetamol across sub-Districts.

The primary purpose of EBM is to support the self-enforcing design of the VAT

(Pomeranz, 2015). Through the creation of a paper trail, EBM increases the infor-

mation with which RRA can validate declarations and undertake audits. In Rwanda,

VAT input credits must be supported by EBM receipts, creating an incentive for the

buyer to both request and associate their TIN with a purchase receipt.

or if the internet connection is unstable, RRA estimates 98% of total receipts due to be declared are
transmitted within two weeks.

A2



online appendix

Figure A1: A fictitious EBM receipt
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A.1.1 EBM data construction

Our analysis of the EBM data is built on a dataset of prices and quantities at the buyer

sub-District-by-firm-product-by-month level. We construct the following outcomes

from this data:

Product description Each item in a receipt is accompanied by a free-fill descrip-

tion entered by the firm (e.g., “Coca-cola 1.5l”). Firms enter these descriptions to

EBM II software when they receive new stock. EBM II subsequently prints the de-

scription of each item at the point of sale.

Value and quantity To account for cancellations in the data, we aggregate over

values and quantities of receipt items on the same receipt, with the same item de-

scription, the same price and the same product code. For the example in Figure A1

this creates a quantity and value of the third and fourth item will be 1 + -1 = 0 and

1800 + -1800 = 0, respectively. We remove products from our dataset which were

voided or cancelled. We also remove two taxpayers from our dataset which record

implausibly large changes in turnover.

Price We take the following steps to improve measurement of prices. First, as

described in Section 2.1.2, we employ firm-product fixed effects in all analysis of

prices to ensure that we are appropriately comparing mask prices adjusting for quality

differences across firm-products. Second, we note that the units in which retailers

report a sale of masks within firm-product are sometimes imperfectly measured in

the data. We therefore winsorize prices within firm-product at the 5th and 95th

percentiles.

We identify products using string descriptions. To identify masks and paraceta-

mol, we string match masks and paracetamol, respectively, in English, French, and

Kinyarwanda (e.g., mask, masque, agapfukamunwa) in product descriptions. We

subsequently remove products from this data, which satisfy the matching algorithm,

but are not face masks. This includes, for example, packaging for masks (“Mask

Envelope”) or masks for nebulizers.

Product UNSPSC codes In order to determine the tax status of a product, firms

classify their inventory using United Nations Standard Products and Services Code
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(UNSPSC) codes. We identify textile products (a product grouping) using UNSPSC

codes 601058, 5310 and 2312. We ensure that the string descriptions conform to the

UNSPSC product descriptions for each code.

A.1.2 EBM descriptive statistics

Table A1: Masks in EBM

Manufacturer Retailer/Trader Importer
(1) (2) (3)

# sub-Districts 26 108 44
# mask purchasing sub-Districts 26 107 44
# mask selling sub-Districts 15 70 16

# firms 519 2,286 1,577
# of mask purchasing firms 504 1,987 1,552
# of mask selling firms 25 502 65

# receipts 1,663 69,990 15,804
# of mask sales 1,746 71,045 16,093
# of masks 1,346,059 2,684,475 684,446

Mask sales, RwF 643,380,638 1,075,685,848 1,499,129,971

Notes: Summary statistics, either counts or total values, on mask sales in EBM during
our study period are reported in this table. Column 1 reports statistics on sales by
manufacturers, Column 2 reports statistics on sales by non-manufacturers excluding mask
importers, and Column 3 reports statistics on sales by non-manufacturer mask importers.

Table A2: Mask supply chains in EBM

Sales to (destination)
sub-District

Purchases from (origin)
sub-District

(1) (2)

sub-Districts 2.07 (2.23) 16.40 (20.29)

Firms 2.47 (3.45) 41.07 (58.15)

Receipts 14.99 (47.88) 118.93 (166.52)

Notes: Average counts on mask sales in EBM during our
study period are reported in this table, with standard de-
viations in parentheses. Column 1 reports counts for sales
to each destination sub-District (excluding destination sub-
Districts with no purchases), while Column 2 reports counts
for sales from each origin sub-District (excluding origin sub-
Districts with no sales).

A5



online appendix

A.2 Customs data

To compare the local and global mask markets we complement domestic EBM II

data with similarly granular international trade data. Customs data collected by

RRA contains the universe of tax-registered importing firms based in Rwanda. Im-

porting firms are identified by the same Taxpayer Identification Number (TIN) which

identifies a firm for domestic declarations (including VAT).

The data includes the imported value, weight, product unit, Harmonized System

(HS) product codes, an import origin and a timestamp at the point of entry. In ad-

dition, two free-text string fields are populated with product descriptions by customs

officers. We identify masks using a combination of HS product codes, and product

string descriptions. Just as in EBM data, we exclude items outside the scope of our

study (e.g., oxygen masks).

A.2.1 Customs data construction

Product descriptions At import, product descriptions are captured by RRA cus-

toms officers at the border. We identify imports exclusively containing masks using

string descriptions. We subsequently remove products from customs data, which

satisfy the matching algorithm, but are not face masks.

Price The most salient difference for our research, between customs and EBM data

is that no natural price (per unit) variable exists in the international trade data.

The data does include the total imported value, as measured by the Cost, Insurance,

Freight (CIF), and several quantity variables including product quantity and Net

Weight (KG). As discussed in Appendix A.1 units of quantity may vary. We use the

import value and weight to construct a mask price per unit of weight for transaction

r made at the firm-border post combination f in month t.

pimp
rft =

CIFrft

KGrft

We winsorize border prices at the 5th and 95th percentile.
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A.3 Additional appendix data sources

Firm registration Firm registration data contains firm-level details including the

ISIC sector classification, and the Province, District and sub-District in which the firm

operates. This data is collected when the firm is formally registered at the Rwanda

Development Board (RDB) and continuously monitored and updated by RRA.

Census

A.4 Time series of mask prices

To construct our time series of mask prices, we estimate the following equations

to document changes in both domestic prices and border prices of masks in Rwanda

during the COVID-19 pandemic. For both domestic and imported masks, we consider

transactions from November 2019 through April 2021.

Domestic mask prices To account for the composition of domestic mask sales,

we construct prices as mean log prices at the month-by-firm-product level. We let

pft be the mean log price of firm-product f sold domestically in month t. We then

estimate

log pft =

Apr 2021∑
t=Nov 2019,t̸=Jan 2020

τt + αf + ϵft (A1)

where τt captures the change in log mask prices relative to January 2020, and αf is

a firm-product fixed effect that controls for any changes in the composition of masks

sold domestically. We report standard errors clustered at the sub-District of the firm.

As discussed in Section 1.2, starting April 2020 sales of domestically manufactured

multi-layer masks grew relative to sales of imported medical masks.

Border mask prices For border prices, we similarly construct mean log prices per

unit at the month-by-firm-border post level. Since unit mask prices are not naturally

identified in the customs data, we prices per unit of weight, net of freight weight.A5

Further, as we are unable to consistently identify products in the customs data, we

use firm-border post fixed effects to account for changes in the composition of mask

A5See Appendix A.2 for additional details on this construction.
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imports. We let pimp
ft be the mean log price of imported masks in customs data for

firm-border post f in month t.

log pimp
ft =

Apr 2021∑
t=Nov 2019,t̸=Jan 2020

τ imp
t + αf + ϵimp

ft (A2)

where τ imp
t captures the change in log border prices of masks relative to January

2020, and αf is a firm-border post fixed effect that controls for any changes in the

composition of imported masks, assuming that variation in quality of imported masks

and other unobservable determinants of price does not systematically vary over time

within firm-border post. We report standard errors clustered at the firm level.

B Mask specifications and enforcement

B.1 Definition of mask quality

Guidelines for the manufacture of barrier masks were released by the Rwanda FDAA6

and the Rwanda RSBA7 on April 17 and April 24, respectively. The guidelines released

by the RSB were gazetted in Rwandan Law in June 2020.A8 The guidelines include

references to:

• Performance: ISO specifications for penetration (for solid and liquid particles),

air permanence (315-1265 µm/Pa s), and mass per unit area (120-250 g/m2)

• Materials: cotton, viscose, polyester; multiple layers preferred

• Size: Four adult size specifications and three child specifications detailed (e.g.,

a small adult mask should measure 280-306 mm x 104-111 mm)

• Labelling: The manufacturer’s name, the constituent material, recommended

use period, handling instructions

• Packaging: Masks should be packaged to protect masks from contamination or

damage
A6https://rwandafda.gov.rw/web/index.php?id=36
A7https://www.rsb.gov.rw/fileadmin/user_upload/files/pdf/new_stds/RS_433-

2_2020.pdf
A8https://www.rsb.gov.rw/fileadmin/user_upload/files/pdf/new_stds/National_

Standards_May_2020.pdf

A8
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https://www.rsb.gov.rw/fileadmin/user_upload/files/pdf/new_stds/RS_433-2_2020.pdf
https://www.rsb.gov.rw/fileadmin/user_upload/files/pdf/new_stds/RS_433-2_2020.pdf
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B.2 Enforcement

Objective ISO testing metrics are outlined in the RSB’s standards guidelines, which

were gazetted into law in June 2020. Individual firms subsequently report subjecting

their masks to quality checks. As a supporting anecdote, Chillington Rwanda (with

support from the RSB) provided masks to the FDA for approval.A9 As another,

UFACO & VLISCO NL LTD reported inspections and compliance with the RSB

standards before the masks were leave the factory gate.A10

In an interview on May 7 with Kigali Today, the Quality Control Division Manager

at the RSB and the Director of Engineering Standards at the FDA discussed the issue

of facemask quality at markets, and underscored their role as quality auditors; masks

found to be non-compliant with standards were removed from markets, packaging

should comply with the RSB standards:A11

After the policies were published [April 17] we started the inspection which

makes me think that all face masks being manufactured now meet all the

required standards

Director of Engineering Standards, FDA

C Comparison to existing estimates of impacts of

masks on COVID-19 infections

Next, we scale our estimates of impacts of mask manufacturing exposure for compa-

rability. We focus on our estimates without controls, and in particular of our estimate

of the impacts of mask manufacturing exposure on average pre-universal quality stan-

dards sales of anti-fever medicine as a proxy for COVID-19 infections. We divide this

estimate by 2 (as it averages over impacts 1, 2, and 3 months post-licensing) to recover

impacts on monthly growth rates in infections – an increase in mask manufacturing

exposure from 0 to 1 causes the monthly growth rate of COVID-19 infections (defined

as the ratio of COVID-19 infections in the current month to COVID-19 infections in

the previous month) to fall by 7.85%. We then take two approaches to scaling this

A9https://www.msdhub.org/blog/learning-story-spotlight-chillington-rwanda-

pathways-for-adaptation-and-growth-responding-to-societies-and-customers-needs
A10http://expressnews.rw/are-face-masks-safe-with-health-standards-for-users/
A11https://www.youtube.com/watch?v=en8RdSauF2g

A9
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estimate. First, to evaluate the overall effect of mask manufacturing in Rwanda, we

multiply our estimates by a standard deviation of log mask manufacturing exposure

in our primary analysis sample (-8.13), and interpret this as the effect of setting mask

manufacturing exposure equal to zero nationally. Alternatively, we divide our esti-

mate by the pre-universal quality standards impact on per capita manufactured mask

purchases (0.013) which we interpret as the effect of households exclusively sourcing

masks from manufacturers. Applying the former, domestic mask manufacturing re-

duced the monthly growth rate of COVID-19 infections nationally by at least 2.9%

before the introduction of universal quality standards. Applying the latter, shifting

from no manufactured masks to complete adoption of manufactured masks causes the

monthly growth rate of COVID-19 infections to fall by 53%.

We then compare this estimate to results from Chernozhukov et al. (2021) and

Abaluck et al. (2021). Chernozhukov et al. (2021) find that mandating employees

wear masks holding fixed behavior causes a 10% decrease in weekly case growth, which

scales to a 35% decrease in monthly case growth; this is statistically indistinguishable

from our estimate of the impacts of adoption of manufactured masks. Abaluck et al.

(2021) find that promotion of masks led to a 29pp increase in mask wearing in public,

which over 8 weeks was associated with an 11.2% reduction in symptomatic infections

when surgical masks were provided. Scaling this estimate by the inverse of their

estimated impacts on mask adoption yields an 19% decrease in monthly infection

growth. While our estimates and theirs are not statistically different from one another,

taking the point estimates at face value suggests larger impacts of masks on the spread

of COVID-19 in the United States and in urban and peri-urban Rwanda than in rural

Bangladesh; alternatively, the source of variation in mask policy in Bangladesh is

at a much narrower geography (village) than in Rwanda and in the United States,

suggesting across-village spillovers may reduce estimated impacts of masks on the

spread of COVID-19 in Bangladesh.

D Cost-effectiveness

As described in Section 2.3, we estimate large decreases in COVID-19 infections

caused by domestic mask manufacturing in Rwanda. In this section, we compare

these impacts to available estimates of the fiscal costs of promoting domestic mask

manufacturing in order; this provides the cost-effectiveness of promotion of domestic
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mask manufacturing as a policy to reduce COVID-19 infections.

First, to calculate the decrease in COVID-19 infections caused by domestic mask

manufacturing in Rwanda, we multiply, in April 2020 through April 2021, monthly

national new COVID-19 infections (from the Rwanda Biomedical Center) by our

estimates of the monthly impacts of domestic mask manufacturing on COVID-19

infections from Section 2.3. As noted in Section 2.3.1, these estimates provide a

lower bound on the impacts of domestic mask manufacturing on COVID-19 infec-

tions. Using this approach, we calculate domestic mask manufacturing averted 1,451

COVID-19 infections from April 2020 through April 2021.

Second, the fiscal costs of promoting domestic mask manufacturing are the sum

of the costs of two policies described in Section 1.2: the VAT exemption for domesti-

cally manufactured masks, and administrative licensing costs. We calculate an upper

bound on a fiscal costs of the VAT exemption as the value-added tax rate (18%) times

the total turnover of exempted masks to final consumers from May through August.

While we do not have data on licensing costs, we note that the small number of mask

manufacturers suggests that the associated licensing and audit costs are likely to be

small relative to the costs of the VAT exemption. Using this approach, we calculate

a total cost of RwF 41 million (approximately $40,000) of the promotion of domestic

mask manufacturing.

Third, we take the ratio of these two estimates, and find the cost of averting a

COVID-19 infection through promotion of domestic mask manufacturing in Rwanda

was 9,800 RwF/infection (approximately $9.5/infection). This is an order of mag-

nitude smaller than estimates from Kenya of treating a COVID-19 infection, which

range from $278 to $5,879 (Barasa & Kairu, 2020).
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E Appendix tables

Table A3: Non-mask textile trade between sub-Districts is decreasing in distance

Dependent variable:

Pre-licensing
non-mask textile share
(1) (2)

log distance
-0.379
(0.139)
[0.006]

-0.281
(0.155)
[0.069]

Estimation method Poisson Poisson

Intra-provincial trade dummy X

Origin (sub-District) FE X X

Destination (sub-District) FE X X

# observations 16,904 16,904

# clusters (sub-Districts) 239 239

Notes: Columns 1 through 2 report coefficients on log dis-
tance between origin and destination sub-Districts. Stan-
dard errors are in parentheses, and p-values reported in
brackets. Coefficients are estimated using Poisson pseudo
maximum likelihood. All columns include origin sub-District
fixed effects and destination sub-District fixed effects. Col-
umn 2 includes an indicator that origin and destination sub-
Districts are in the same Province.
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Table A4: Increases in number of paracetamol receipts are associated with increased
COVID-19 cases

Dependent variable:

Confirmed COVID-19 cases

(1) (2) (3) (4)

log # paracetamol receipts
0.292
(0.058)
[0.000]

0.292
(0.060)
[0.000]

0.561
(0.120)
[0.000]

0.459
(0.147)
[0.002]

Estimation method Poisson Poisson Poisson Poisson

Month FE X X

Destination District FE X X

# observations 367 367 366 366

# clusters (Districts) 30 30 29 29

Notes: Columns 1 through 4 report coefficients on log number of parac-
etamol receipts. Standard errors are in parentheses, and p-values re-
ported in brackets. Coefficients are estimated using Poisson pseudo
maximum likelihood. Columns 2 and 4 include district fixed effects,
Columns 3 and 4 include month fixed effects, and Column 4 includes
month fixed effects interacted with controls for Province fixed effects,
log population density, and log number of textile manufacturers.
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Table A5: Mask manufacturing exposure without jackknife increases purchases of
masks from manufacturers, decreases mask prices, and reduces COVID-19 infections

Dependent variable

# manuf. masks

# adults
log mask price # paracet. purch.

(1) (2) (3) (4) (5) (6)

Panel A: Difference-in-Differences

log Mask manufacturing exposured
×Postt

0.007
(0.002)
[0.001]

0.001
(0.001)
[0.362]

-0.056
(0.030)
[0.061]

-0.095
(0.033)
[0.004]

-0.268
(0.140)
[0.056]

-0.231
(0.128)
[0.072]

Panel B: Universal quality standards

log Mask manufacturing exposured
×Postt
×Pre-universal quality standardst

0.013
(0.004)
[0.001]

0.003
(0.003)
[0.313]

-0.079
(0.028)
[0.005]

-0.110
(0.032)
[0.001]

-0.193
(0.101)
[0.056]

-0.120
(0.098)
[0.221]

log Mask manufacturing exposured
×Postt
×Post-universal quality standardst

0.005
(0.002)
[0.006]

0.000
(0.001)
[0.564]

-0.046
(0.032)
[0.157]

-0.087
(0.035)
[0.014]

-0.235
(0.142)
[0.098]

-0.254
(0.141)
[0.072]

Estimation method OLS OLS OLS OLS Poisson Poisson

Firm-product FE X X

Destination sub-District FE X X X X X X

Month FE X X X X X X

Normalized intensity X X X

Controls × Month FE X X X

# observations 4,302 4,302 9,748 9,748 2,502 2,502

# clusters (sub-Districts) 239 239 239 239 139 139

Notes: Columns 1 through 6 report coefficients on mask manufacturing expo-
sure interacted with month fixed effects from estimates of Equation 3; however,
mask manufacturing exposure is constructed using mask manufacturing inten-
sity instead of leave-out mask manufacturing intensity. Robust standard errors
are clustered at the sub-District level and p-values are reported in brackets. All
columns include destination sub-District fixed effects and month fixed effects.
Columns 1 and 2 include firm-product fixed effects, while Columns 5 and 6 es-
timate coefficients using Poisson pseudo maximum likelihood. Columns 2, 4,
and 6 include month fixed effects interacted with controls for Province fixed ef-
fects, log population density, log purchases in EBM, the employment rate and
secondary school completion and normalize mask manufacturing intensity by
province average mask manufacturing intensity before constructing mask man-
ufacturing exposure.
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Figure A2: Mask manufacturing exposure increases purchases of masks from man-
ufacturers, decreases mask prices, and reduces COVID-19 infections when parallel
pre-trends are imposed

(a) Quantity of masks purchased from manufacturers per adult

(b) Price impacts

(c) log purchases of paracetamol

Notes: Figure A2 plots coefficients on log Mask manufacturing exposure interacted with month fixed
effects from estimates of Equation 3. Confidence intervals use robust standard errors are clustered at
the sub-District level and presented at 5% significance. All figures include destination sub-District
fixed effects and month fixed effects. Figure A2b includes firm-product fixed effects, while Figure
A2c estimate coefficients using Poisson pseudo maximum likelihood.
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Table A6: Mask manufacturing exposure increases purchases of masks from manu-
facturers, decreases mask prices, and reduces COVID-19 infections across alternative
approaches to including controls

Dependent variable

# manuf. masks

# adults
log mask price # paracet. purch.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Difference-in-Differences

log Mask manufacturing exposured
×Postt

0.006
(0.002)
[0.001]

0.010
(0.003)
[0.006]

0.002
(0.001)
[0.108]

0.004
(0.002)
[0.077]

-0.052
(0.031)
[0.096]

-0.057
(0.034)
[0.093]

-0.080
(0.030)
[0.008]

-0.084
(0.032)
[0.010]

-0.268
(0.140)
[0.056]

-0.250
(0.139)
[0.072]

-0.291
(0.138)
[0.035]

-0.276
(0.138)
[0.046]

Panel B: Quality standards

log Mask manufacturing exposured
×Postt
×Pre-universal quality standardst

0.013
(0.004)
[0.001]

0.020
(0.007)
[0.007]

0.005
(0.003)
[0.078]

0.009
(0.005)
[0.097]

-0.075
(0.029)
[0.011]

-0.079
(0.031)
[0.011]

-0.099
(0.030)
[0.001]

-0.102
(0.032)
[0.001]

-0.202
(0.115)
[0.078]

-0.199
(0.108)
[0.067]

-0.174
(0.117)
[0.137]

-0.170
(0.110)
[0.125]

log Mask manufacturing exposured
×Postt
×Post-universal quality standardst

0.004
(0.002)
[0.007]

0.007
(0.003)
[0.021]

0.001
(0.001)
[0.392]

0.002
(0.002)
[0.216]

-0.042
(0.033)
[0.213]

-0.045
(0.037)
[0.221]

-0.072
(0.032)
[0.024]

-0.075
(0.035)
[0.031]

-0.280
(0.151)
[0.063]

-0.260
(0.151)
[0.084]

-0.315
(0.151)
[0.037]

-0.297
(0.151)
[0.049]

Estimation method OLS OLS OLS OLS OLS OLS OLS OLS Poisson Poisson Poisson Poisson

Firm-product FE X X X X

Destination sub-District FE X X X X X X X X X X X X

Month FE X X X X X X X X X X X X

Normalized intensity X X X X X X

Controls × Month FE X X X X X X

# observations 4,302 4,302 4,302 4,302 9,748 9,748 9,748 9,748 2,502 2,502 2,502 2,502

# clusters (sub-Districts) 239 239 239 239 239 239 239 239 139 139 139 139

Notes: Columns 1 through 12 report coefficients on mask manufacturing exposure interacted with
month fixed effects from estimates of Equation 3. Robust standard errors are clustered at the sub-
District level and p-values are reported in brackets. All columns include destination sub-District
fixed effects and month fixed effects. Columns 1 through 4 include firm-product fixed effects, while
Columns 9 through 12 estimate coefficients using Poisson pseudo maximum likelihood. Columns 3,
4, 7, 8, 11, and 12 include month fixed effects interacted with controls for Province fixed effects, log
population density, log purchases in EBM, the employment rate and secondary school completion,
and Columns 2, 4, 6, 8, 10, and 12 normalize mask manufacturing intensity by province average
mask manufacturing intensity before constructing mask manufacturing exposure.

A16



online appendix

Appendix references

Barasa, E. & Kairu, A. (2020). What does it cost to treat a covid-19 patient in kenya?

Wellcome Trust Policy Brief.

Pomeranz, D. (2015). No taxation without information: Deterrence and self-

enforcement in the value added tax. American Economic Review, 105(8), 2539–69.

A17


